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Harmonic Oscillation in the Presence of Multiple 
Damping Forces 
Chris Pelto, Keith Coates, Narendra Jaggi 
Illinois Wesleyan University 

Abstract 

The relatively mundane damped harmonic oscillator is found to 
exhibit interesting motion once under the influence of both a 
velocity dependent and a Coulombic frictional damping force. Data 
for the decay of the amplitude as a function of time were collected 
on a specially prepared torsional oscillator. with a variable 
electromagnetic damping mechanism. An analytical solution of the 
appropriate equation of motion was obtained by the method of 
Laplace transforms. In both the limits of zero Coulombic friction 
and zero velocity damping, the solution reduces to the well-known 
answers to the problem. the solution, when plotted with the correct 
parameters, fits the numerical solution very well. The solution also 
shows excellent quantitative agreement with the experimental data. 

The Torsional Oscillator 

A torsional harmonic oscillator was used to study harmonic 
motion under the desired conditions. The system consists of a 
copper wheel which is free to rotate about an axle through its 
center. The restoring force is supplied by a linear coiled spring 
connected to the wheel about t~lis axis of rotation. This force 
supplied by the spring is described by Hooke's Law, which says the 
magnitude of the force is linearly proportional to the displacement 
of the wheel from equilibrium. 

The velocity dependent force is supplied via an electromagnet 
positioned such that its poles provide a magnetic field at the bottom 
of the wheel. When the wheel is allowed to rotate, the changing area 
of tile copper in this field causes eddy currents to arise in tile 
metallic wheel. The presence of moving currents then causes a 
force to arise which opposes the motion of the wheel. The retarding 
force is linearly dependent on the velocity with which the wheel is 
moving. The magnitude of the force can be controlled by varying the 
amount of current passing through the coils of the electromagnet. 
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This velocity dependent damping force varies linearly with the 
amount of current flowing in the coils1 . 

A constant damping force is attained by allowing Coulombic 
friction to be present in the axle of the wheel. Under normal 
operation, Coulombic friction is minimized by thoroughly lubricating 
the contact area. If the contact area is not lubricated before 
collecting data, the friction will no longer be negligible. 

The amplitude readings are indicated by a pointer connected to 
the wheel which points to a graduated scale positioned around the 
wheel. The scale is not graduated in any particular units, and thus 
can be described in a system of radians or degrees if desired. 
Specific units are not necessary, since the decay of the amplitude 
can be described generically without loss of meaning. 

The time measurements are made by placing a photo gate in a 
position to be triggered by the pointer connected to the wheel. This 
photo gate is placed at the equilibrium position of the system, so all 
times will be half period readings as the pointer passes through this 
point. 

Theory 

The torsional oscillator is directly analogous to the much more 
familiar linear system consisting of a mass on a spring (as well as 
several other oscillating systems). The displacement angle which is 
measured in the rotational system is the same as the linear 
displacement of the mass on the spring. The moment of inertia of 
the wheel is analogous to the mass of the object connected to the 
spring. The spring constant, which is the constant of proportionality 
in Hooke's Law, is basically the same. The velocity dependent 
damping factor is also basically the same in each case. The equation 
of motion for a non-driven, damped harmonic oscillator is written in 
linear terms as: 

mx+cx+kx =O. (1 ) 

This equation is obtained from Newton's second law. m is the mass 
of the object connected to the spring, c is the constant of 
proportionality for the velocity dependent damping force, k is the 
spring constant, and x (which is a function of time) is the 
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displacement from equilibrium. The dots indicate time derivatives 
of the x variable. For simplicity, the equilibrium point has been 
arbitrarily chosen to be at x = o. 

The solution of equation 1 is quite well known, and it can be 
found in any undergraduate level mechanics book. The solution can 
be obtained when two initial conditions are defined (since it is a 
second order differential equation). Generally, the mass is displaced 
from equilibrium and then released from rest. Thus, these initial 
conditions are: 

x(t =0) =Xo and x(t =0) =O. 

The solution to the differential equation is now easily found to be: 

2--t 
x(t) =XOC 2m COS(OJt), (2) 

where the angular frequency co is ~~ -C:J. A decay envelope is 

defined by the term multiplied by the oscillating cosine term. Thus, 
the oscillations will decay in an exponential manner with the 
progress of time. 

The harmonic oscillator that is being considered also has a 
constant Coulombic frictional force acting on it. This problem is not 
generally part of a typical undergraduate mechanics course, but it 
has been solved before. When this contact friction is the only 
damping force, the system can be examined from energy 
considerations. At any point, the harmonic oscillator will have a 
total energy given by: 

Energy =T + V, (3 ) 

where T is the kinetic energy and V is the potential energy at the 
given point. The energy at any maximum amplitude An will simply 
be: 

(4 ) 
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T is equal to zero since the oscillator is not moving at this point. 
The next maximum amplitude (A 1)' achieved on the other side of 

n+ 
tile equilibrium point, will have a total energy given by: 

2 
Energy = 0 + l.klA . (5)

2 n + 1
1 

The distance that the oscillator traveled from any maximum 
amplitude to the next amplitude on the other side of the equilibrium 

position is IAn I+ IAn + 11· Thus, if a constant frictional force of 

magnitude f is causing the oscillator to dissipate energy by doing 
work on the system, the work energy theorem can be written as: 

where the change in energy of the system is equal to the work done 
on it. With a little bit of algebra, it can be shown that: 

A I-IA I=2 f . (7a)I n n + 1 k 

Equation 7a says that the amplitude will decay at a constant rate, ' 
since the difference between successive amplitudes is always 
constant. These amplitudes are on opposite sides of equilibrium, so 
the derivation must be extended to successive peaks occurring on 
the same side of equilibrium. 

In order to study peaks occurring on the same side of 
equilibrium, the derivation must be generalized to the possibility 
that the friction force acting on the system may not be the same 
magnitude in each direction. If fa is the friction opposing motion in 
the negative direction and f b is the friction opposing motion in the 

positive direction, the derivation is slightly changed. If IAn I is on 

the positive side of equilibrium, then equation 7a becomes: 

2f 

I
 (7b)
A I-IA I=_a
n n+l k' 
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Subsequently, the difference between the next two peaks will be: 

fb
A -A =2- (7c)

n+2 .I n+1 I I I k 

Thus, when the plot of Ix(t)1 is examined, the amplitude difference 

from IAnl to IAn+ 2 1 is ~(fa +f b )· 

This frictional force must be incorporated into the differential 
equation of motion of the oscillator. The frictional force opposes 
the motion of the oscillator, but with a constant magnitude in each 
direction. If this damping force were to be represented 
mathematically, it would appear: 

f t E (jp,U + 1)p] j = 0,1,2,3...} 
F(t) = _ a . 1.. .{ f b t E (U + 2)P,U + 1)p] ] = 0,1,2,3... 

The new equation of motion is now: 

mx+cx+kx = F(t). (8) 

It should be noted that the period of the square wave will be the 
same period as the oscillating portion of the differential solution, 
since it is dependent on the direction that the oscillator is moving. 

This is now a very complicated problem to solve. The problem 
will assume the same initial conditions as mentioned earlier for the 
case of no Coulombic friction. These conditions were: 

x(t =0) =Xoand x(t =0) =O. 

The damping function must begin positive for the first half of the 
period to retard the oscillator's motion. Similarly, the damping 
function must be negative during the second half of the period for 
the same reason. Solution by the method of Laplace transforms is 
particularly useful for differential equations such as this one. This 
method is particularly good at handling discontinuous functions, and 
initial value problems can be solved quite nicely. The Laplace 



transform changes a function of one variable into a function of 
another variable. The Laplace transform operator is defined to be: 

L {F(t)} = S;e-st F(t)dt = f(s) 

This transformation is useful for the solution of differential 
equations, because differentials can be transformed into algebraic 
terms. The algebraic terms are then solved and transformed back 
with the inverse Laplace transform2,3,4. 

If the theory of Laplace transforms is applied, and a 
considerable amount of algebra is performed, the solution is found 
to be: 

x(t) = Xo(i(t) + 2~m h(t)) + I; (1- I(t) - 2~m h(!)) (9) 

2(f + f ) )00 (+ a b I(-lr 1- f(t- np)-_C_h(t_ np) S (t)
kp 2 2mm 2 np 

n = 1 2 

p 
----.Lt ----.Lt n }{I t ~ 

where f(t) =e 2m cos(mt) , h(t) =e 2m sin(mt) , S (t) = 2 , 
np 0 t < np 
2 2 

P ~ 2: 'and OJ ~ ~~ - C~)'. It is very interesting to note that the 

period of oscillation for this situation where Coulombic 'friction is 
present is exactly the same as when there is no contact friction. In 
other words, the existence of friction in the axle of the system does 
not change the period of the oscillations. It is important to know 
that this is true of the peaks only. An examination of the periodicity 
of the crossing points (the times when the mass crosses 
equilibrium) reveals that it is not constant. This is important for 
scientists using timing devices w~lich rely on oscillating systems 
that may have a constant frictional damping force present. The 
peaks will occur with constant periodicity, while the equilibrium 
points will not. 

For the purpose of this experiment, only the peak amplitUdes 
are desired. The solution above is the full oscillating solution, so 
the peak amplitudes must be extracted. If integral multiples of the 
period are chosen, then the peak amplitudes will be the only values 



-

given by the solution. So, making the substitution t->.ip in equation 
9, the solution takes the discrete form: 

· ) - X (-f;(jP)J la (1 -f;(jP)J (10)xU'P - 0 e +T- e 

2(1 +I ) CX) [ c· J+ akp b n~/-l)n l_e-4m(2J-njpC_l)n . 

Equation 10 reduces to the appropriate form in each of the 
limiting cases. When the Coulombic damping force is not present, 
when la= I b = 0, equation 10 reduces to: 

_.l:-Up) 
xUp)=X C 2m (11 )o 

which is instantly recognizable as the exponential decay envelope 
expected (eq. 2). If the velocity dependent damping force is removed 
by setting c equal to 0, then equation 10 reduces to: 

2(l +I ) 
This is the equation of a line with a slope of - a b This 

kp 
agrees with the linear decay envelope derived from energy 
considerations earlier. 

TI,e decay envelope of the peaks on the other side of 
equilibrium should be the same as that of the positive side. Indeed, 
when the substitution t->( f + jp) is made, the decay envelope is 
exactly as intuition would predict. The absence of Coulombic 
friction results in an envelope that is the negative of the positive 
side's exponential form. Similarly, in the case of no velocity 

2(1 +I )
damping, the envelope is a straight line with a slope + a b. 

kp 
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To verify further that the solution to the differential equation 
is correct, it was compared to a numerical solution. The agreement 
between the two solutions is nearly perfect (fig. 1). 

Experimental Procedure 

The procedure for collecting data from this system is quite 
simple. The wheel was displaced from equilibrium to some 
amplitude, then it was allowed to oscillate freely. The amplitude 
measurements were simply read at eacl1 maximum displacement 
attained. Corresponding time measurements were made by the photo 
gate. The times were then averaged to be used as the period for 
these oscillations. This averaging is justified by the fact that the 
peaks occur with constant periodicity. The trials were repeated 
with different currents sent through the coils of the electromagnet 
(ranging from 0 Amperes to 0.8 Amperes). 

This effect requires careful experimental design to measure on 
this particular apparatus. The photo gate had to be placed at the 
equilibrium point for obvious reasons. This point ensured that the 
oscillator's pointer would pass through the gate for large 
amplitudes as well as small amplitudes. It also ensured that timing 
errors would be minimized, since the equilibrium point is the 
position where the oscillator has the most kinetic energy. When the 
pointer moves through the photo gate too slowly, the timer is 
triggered by both the leading and trailing edges of the pointer, 
rather that one single trigger by the pointer itself. So, the time 
measured is the time it takes to travel from the equilibrium point to 
the maximum amplitude and then back to the equilibrium point. 

Experimental Results and Discussion 

The results obtained 'from the torsional oscillator, at a first 
glance, illustrate the effects of the two forces on the system quite 
well. The data collected from the system when no current is sent to 
the electromagnet corresponds exactly with the theoretical 
expectation for a system decaying under the influence of a constant 
damping force (fig. 2). 
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The slopes of the decay envelope on both the positive and the 
negative sides of equilibrium were obtained by fitting a linear model 
to the experimental data (table 1). 

Added current througl1 the electromagnet displays the 
exponential nature of the decay becoming much more prominent 
(figs. 3 - 6). The lower currents result in a more difficult situation, 
where the Coulombic frictional force and the electromagnetic 
velocity dependent damping force are comparable in magnitude and 
neither dominates the motion. 

Fitting the New Model 

There are two parameters that can be varied when fitting the 
model to the experimental data, and there are two parameters that 
can be determined experimentally. The value of Xo is obviously the 

initial amplitude from which the pendulum is allowed to oscillate. 
The value for the multiplier of the summation term, 
(/ + / ) 

a b, is obtained from the slope of the plot which has no 
k 

velocity damping present. With these two values fixed, a least 
squares method could be used to fit the model to the experimental 

/
data. ~ and ~ could both be minimized in the fit. 

2m k 

The fit was accomplished by making the discrete model 
continuous. A substitution was made such that jp->t. This metl10d 
of "smoothing" the function is not totally successful, due to the 
complicated nature of the model, but it is sufficient for a fitting 
program to minimize the parameters. 

When the parameters have been minimized, the values are 
inserted back into the discrete function to generate values for the 
peak amplitudes. Plotting the model's values superimposed on the 
plot of the corresponding experimental data allows for a visual 
examination of the 'fit. All of the 'fits are very good (figs. 7 - 10). 

Success of the Model 
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The model turns out to be quite successful in fitting the 

experimental data. The results of the parameter minimization are 
shown in table 2. The most convincing argument that the model is 

fitting properly is the linear relationship between the ~ values 
2m 

obtained and the corresponding currents used in the electromagnet 
('fig. 11). Since the apparatus was designed so the magnitude of the 
velocity damping force (c in the equation of motion) would be 
linearly dependent on the current through the coils of the 
electromagnet. By finding this same relationship by least squares 
fit, the model is verifying that it is fitting properly. 

The most obvious result from the parameter minimization is 
f 

the fact that the values obtained for ---.!!:..- are not constant from one 
k 

trial to another. According the differential equation of motion, the 
magnitude of fa is invariant, since it is a constant inherent in the 
system. This assumption may not be correct. The amount of 
Coulombic friction in the system could be a dynamic quantity. If the 
apparatus is allowed to sit untouched for a length of time, the 
contact areas in the axle will be altered by dust and other particles 
which can settle. The coefficient of the friction may also change 
with time as the lubricant evaporates. For these reasons, the 
assumption that a particular trial may have a constant amount of 
Coulombic friction is a good approximation, but the assumption that 
the magnitude of the frictional force remains constant from one 
trial to another is very likely wrong. This is especially true for 
trials performed on different days. For this reason, differing values 
of the friction term are quite justified. The fit could possibly be 
made more meaningful if botl1 the fa and f b terms are made variable 

parameters. 

Conclusion 

The analysis and solution of this system leads to some very 
nice conclusions. First of all, the solution to the differential 
equation is correct, since it agrees with the numerical solution with 
such a high degree of accuracy. When this solution is fitted with the 
experimental data, the agreement is also excellent. This implies 
that the differential equation of motion contains accurate 
representations of the forces present in the system. The step 
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function used to represent the Coulombic friction is a novel 
portrayal of the actual force, but it may not be totally accurate. The 
nature of the friction occurring in the axle implies that the 
magnitude of the force is more complex than this model accounts 
for. It is quite likely that a "sticking" and "slipping" effect is 
occurring, where the adhesion is occurring between the surfaces 
when below a certain velocity. When the mass attains enough 
kinetic energy, it can escape this adhesive force and slide over the 
surface with no sticking affect. The velocity of the pendulum is 
constantly increasing and decreasing, so when it is moving slower 
near the peak amplitudes, this effect is most likely coming into 
play. The magnitude of the friction force thus increases near the 
peaks and more energy is dissipated than when the pendulum swings 
through the equilibrium point. It is in this direction that research of 
this system will undoubtedly go, as the more complex form of 
Coulombic friction is introduced into the model. Analytic solution 
of the new differential equation may be impossible, but numerical 
solution probably will be possible. 

The analytic model of this system does have some practical 
usefulness. In mechanical engineering, the model could be used to 
asses the magnitude of the Coulombic friction present if the 
velocity dependent damping constant is known. It could also be used 
in the design of various mechanical oscillators which will most 
certainly have contact friction inherent in the motion. The design of 
timing mechanisms could benefit from the knowledge that the 
amplitude peaks retain tl,e same periodicity despite the presence of 
contact friction. 

As the project stands, the usefulness is almost entirely 
pedagogical. Mechanical engineers and physicists have known about 
this type of friction, and the modeling has probably been done 
numerically. An analytic treatment has never been included in any 
textbooks, most likely due to the prohibitively difficult nature of 
the solution. This solution process offers an important method of 
solving differential equations by Laplace transforms, as well as 
providing some interesting information about a system with these 
particular damping forces. 



Tables 

Table 1 (Slopes of linear decay envelopes) 

Trial 
Positive Side of Equilibrium 
Negative Side of Equilibrium 
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Slope (Absolute Value) 
0.377±0.002 
0.345±0.002 

Table 2 (Values obtained for variable parameters) 

Current through 
electromagnet 
(Amperes) 

c 
-
2m 

fa 

k 

0.25 0.0293 2.49 
0.40 0.112 0.808 
0.60 0.258 0.294 
0.80 0.483 0.341 



Figure 1
 
Model with Numerical Solution
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Experimental Data (I - 0 A)
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Figure 3 
Experimental Data (I - 0.25 A) 
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Figure 4 
Experimental Data (I - 0.4 A) 
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Figure 5
 
Experimental Data (I - 0.6 A)
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Figure 6
 
Experimental Data (I - 0.8 A)
 

20..............-t-+-+-+-I-t-+-+........I-+--Io--+-+-II-+-.........~......+­

~ 

c 
Q) 

E 
~ 

ro 
0­

.~o 

4.0 6.0 8.0 

• 

15 ·························_·····,··················· + + ··············-f······································ ...... 

1 O-+!-······························,······················· , , , , -t­

5-t­ , c , _ , , -t-

Time (seconds)
 



o Model 
• Experiment 

10 15 205 

(f)! 

················t<iy· 

... ~..""'.".".""!""""""""""""""'"·····r····························· . . 

~ 

~ 
······························i······················· ············t······~······················~··········· , ······t····························· 

(f): 
~ ~ 

o.0-+-I-+-t~I-+-t-+-+-t-++++-+-+-+-I-+-t~~tI-9J-......++-+­

o 

Figure 7
 
Model's Fit (I - 0.25 A)
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Figure 8
 
Model's Fit (I - 0.4 A)
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Figure 9
 
Model's Fit (I = 0.6 A)'
 

...., 15 -....- ~ , ~ ~ 

c 
Q) 

E 
~ 10 
ro 
a. 
tJ) 

(:) 5.0 

o.0 -+-I1-t-l~1--'t-.-+-t-+-+-t-.......++oofoo+++-+-+...............~J--II-t-l~t-

o	 4 6 8 10 12 14 16 
Time (seconds) 

Figure 10 
Model's Fit (I - 0.8 A) 
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Figure 11
 
c/2m vs. Current
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