Toward an Understanding of Alzheimer's Disease VII: The Effects of βA (1-42) and Ibotenic Acid on the Retention of a Spatial Learning Task in Rats Following Multiple Injections into the Hippocampus

Jason Pequette
Illinois Wesleyan University

Wayne Dornan, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc

http://digitalcommons.iwu.edu/jwprc/1994/posters/43
TOWARD AN UNDERSTANDING OF ALZHEIMER’S DISEASE VII:
THE EFFECTS OF βA(1-42) AND IBOTENIC ACID ON THE
RETENTION OF A SPATIAL LEARNING TASK IN RATS FOLLOWING
MULTIPLE INJECTIONS INTO THE HIPPOCAMPUS

Jason Pequette and Wayne Dornan*, Department of Psychology, IWU

Neuropathologically, Alzheimer’s disease (AD) is characterized by neuritic plaques and neurofibrillary tangles. Evidence has suggested that a protein called β-amyloid (βA) is a major component of the neuritic plaques and may play a role in the neurodegeneration seen in AD. The cellular mechanisms by which βA induces neurotoxicity, however, are still unclear. Recent evidence suggests that the aggregational state of βA may be relevant to its neurotoxicity. Whether portions of the βA protein or the entire sequence produces neurotoxicity in neurons, however, remains a controversy. Still another controversy is whether βA is directly neurotoxic to neurons or whether it increases the vulnerability of neurons. Recent evidence reported by Dornan, Kang, McCampbell and Kang, that injections of βA(25-35) with a low dose of ibotenic acid into the hippocampus did disrupt the acquisition of spatial learning in the rat, supports the vulnerability hypothesis. They suggest that the synergistic effect between βA and ibotenic acid may have produced the neurotoxic effect. In light of recent evidence, reported at this conference, that injections of βA(1-42) alone did not disrupt the retention of a spatial learning task, in this study we assessed the increased vulnerability hypothesis by coinjecting βA(1-42) with a subthreshold dose of ibotenic acid into the hippocampus of male rats. Another problem related to βA’s neurotoxicity may concern the extent of hippocampal damage it produces. Therefore, we will assess the effects of multiple injections of βA(1-42) and ibotenic acid into the hippocampus of male rats. The results will be presented at the conference.