Graduation Year

2013

Abstract

Constraint satisfaction problems (CSPs) involve finding assignments to a set of variables that satisfy some mathematical constraints. Unsatisfiable constraint problems are CSPs with no solution. However, useful characteristic subsets of these problems may be extracted with algorithms such as the MARCO algorithm, which outperforms the best known algorithms in the literature. A heuristic choice in the algorithm affects how it traverses the search space to output these subsets. This work analyzes the effect of this choice and introduces three improvements to the algorithm. The first of these improvements sacrifices completeness in terms of one type of subset in order to improve the output rate of another; the second and third are variations of a local search in between iterations of the algorithm which result in improved guidance in the search space. The performance of these improvements is analyzed both individually and in combinations across a variety of benchmarks and they are shown to improve the output rate of MARCO.

Disciplines

Computer Sciences

Share

COinS