Graduation Year

2013

Location

Room E101, Center for Natural Sciences, Illinois Wesleyan University

Start Date

20-4-2013 11:00 AM

End Date

20-4-2013 12:00 PM

Description

Genetic Algorithms are programs inspired by natural evolution used to solve difficult problems in Mathematics and Computer Science. The theoretical foundations of Genetic Algorithms, the schema theorem and the building-block hypothesis, state that the success of Genetic Algorithms stems from the propagation of fit genetic subsequences. Multi-parent operators were shown to increase the performance of Genetic Algorithms by increasing the disruptivity of genetic operations. Disruptive genetic operators help prevent suboptimal genetic sequences from propagating into future generations, which leads to an improved fitness for the population over time. In this paper we explore the use of a novel multi-parent genetic operator, the elitist schema overlay, which propagates the matching segments in the genetic sequences of the elite subpopulation to bias the global search towards the best known solutions. We investigate the parameters that drive the behavior of elitist schema overlays to determine the most successful model, and we compare this to successful multi-parent and traditional genetic operators from the literature.

Share

COinS
 
Apr 20th, 11:00 AM Apr 20th, 12:00 PM

Elitist Schema Overlays: A Multi-Parent Genetic Operator

Room E101, Center for Natural Sciences, Illinois Wesleyan University

Genetic Algorithms are programs inspired by natural evolution used to solve difficult problems in Mathematics and Computer Science. The theoretical foundations of Genetic Algorithms, the schema theorem and the building-block hypothesis, state that the success of Genetic Algorithms stems from the propagation of fit genetic subsequences. Multi-parent operators were shown to increase the performance of Genetic Algorithms by increasing the disruptivity of genetic operations. Disruptive genetic operators help prevent suboptimal genetic sequences from propagating into future generations, which leads to an improved fitness for the population over time. In this paper we explore the use of a novel multi-parent genetic operator, the elitist schema overlay, which propagates the matching segments in the genetic sequences of the elite subpopulation to bias the global search towards the best known solutions. We investigate the parameters that drive the behavior of elitist schema overlays to determine the most successful model, and we compare this to successful multi-parent and traditional genetic operators from the literature.