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1 Introduction 

Determining the computational complexity of problems is a large area of study. It seeks 
to seprate these problems into ones with "efficient" solutions, and those with "ineffi
cient" solutions. Of course, the strata is much more fine-grain than this. Of special 
interest are two classes of problems: P and NP. These have been of much interest to 
complexity theorists for quite some time, because both contain many instances of im
portant real-world problems, and finding efficient solutions for those in NP would be 
beneficial for computing applications. Yet with all this attention, there are still impor
tant unanswered questions about the two classes. It is known that P ~ NP, however it 
is still unknown whether P = NP or if P c NP. Before we discuss why this problem is 
so crucial to complexity theory, an overview of P, NP, and coNP is necessary. 

The class P is a model of the notion of "efficiently solvable", and thus contains all 
languages (problems) that are decidable in deterministic polynomial time. This means 
that any language in P has a deterministic Thring Machine (algorithm) that will either 
accept or reject any input in nk steps, where n is the length of the input string, and k is 
a constant. The class NP contains all languages that are decidable in nondeterministic 
polynomial time. A nondeterministic Turing Machine is one that is allowed to "guess" 
the correct path of computation, and seems to be able to reach an accept or reject state 
faster than if it was forced to run deterministically. It is unknown whether NP is closed 
under complementation because of this nondeterminism. It is quite easy to show a 
class of deterministically-solvable languages (such as P) is closed under complemen
tation: we simply reverse the accept and reject states. This method is not viable for 
a nondeterministic machine, since switching the accept and reject states will result in 
machine that computes a completely different language. Thus the class coNP is defined 
as containing the complement of every language in NP. 

In the rest of this paper we will present structural definitions of P and NP as well 
as present example languages from each. These structural definitions will give insight 
into the arrangement of the polynomial hierarchy, which is discussed in section 3. A 
diagonalization proof is presented in section 4, and an explanation of the general usage 
of diagonalization follows. In section 5, universal languages are defined and an impor
tant result from Kozen is given. In the final section, the limits of diagonalization as 
they pertain to P and NP are outlined, as well as the same limits for relativized classes. 



2 PandNP 

Another way to illustrate the differences between these complexity classes is with quan
tified logic statements. A language in P can be defined by a predicate P(x, y), where 
P relates x to y (we would merely code this pair as a string to evaluate it). For exam
ple, suppose y is a propositional logic formula and x is a truth value assignment to the 
variables in this formula. The relation P(x,y) will either hold or fail for the truth assig
ment with relation to y and can be checked in polynomial time. All languages can be 
defined by a predicate such as the language {(x, y) I x is a truth assignment that satisfies 
the propositional logic sentence y} which would be in P. The languages in NP contain 
an existential quantifier in front of them, thus: 3xP(x, y), thus the previous language 
would become a problem of satisfiability where we ask whether x satisfies y. This il
lustrates the distinction between solvablility and verifiability. For languages that can be 
solved in polynomial time, the x is "given", but for verifiable languages, the predicate 
merely states that there exists some x, so it must be found by the algorithm. With this 
definition, the languages in coNP defined with a universal quantifier: VxP(x, y) where 
P can be checked in polynomial time. Now our satisfiable sentence of propositional 
logic asks whether the sentence is a tautology; if all x's satisfy y. For further insight 
into P and NP, consider the following problems from propositional logic. 

The problem 2SAT is defined as having a set of variables U and a collection C 
of clauses over the set U, where each clause in C is in conjunctive normal form with 
exactly two variables. The question is whether there is a satisfying truth assignment 
for c. What this is describing is a sentence of propositional logic that contains a finite 
number of variables (such as x, y, Z, etc.) all arranged into conjunctive normal form. A 
formula is in conjunctive normal form when it is a series of conjucts, each of which is 
a disjunct. For example, the sentence (x V y V z) /\ (IY V w VIZ) /\ (x V y) is in CNF. 
For 2SAT, each conjuct (a clause; (x v y) in the previous example) must have only two 
literals. This problem is in P, as it has a deterministic polynomial time solution as given 
by the following metatheorem: 

Proof First, use Conditional-Disjunction to transform all the disjuncts into condi
tional statements. With this information, a directed graph is drawn such that an arrow 
extends from one node to the next only if there is a conditional between the variables 
represented by those nodes. The formula is unsatisfiable if there are two paths that lead 
to contradictory variables form the same source node (for example, a path from y to x 
and another path from y to IX). For a satisfiable formula, all connected paths give sat
isfying truth assignments. This solution can be computed in polynomial time, as none 
of the steps take more than nk time where n is the length of the input (the formula). 0 

This method will produce a satifying truth assignment for the given 2SAT formula 
without any input other than the formula itself. Now consider the the problem 3SAT. 
It is defined in the same way as 2SAT, except that each clause has three variables. It 
happens that 3SAT is in NP, meaning that unlike 2SAT, we do not know if it has a de
terministic polynomial time solution for it, but we can easily construct a a deterministic 
polynomial time verifier, as follows: 

Proof On an input containing the formula and a possible solution, check to see if 
there exists two contradictory truth assignments (x and IX, for example) in the possible 
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solution. If so, reject. Otherwise, check each clause to make sure at least on variable 
is true in each clause. If so, accept. Otherwise, reject. Each step can be computer in 
polynomial time or less, thus placing this language in NP. 0 

This algorithm merely verifies that a solution is in fact a satisfiable assignment. To 
find a solution to 3SAT, we could add a step to the beginning of this algorithm that 
nondeterministically "guesses" a satisfying solution, then go through and check that it 
is correct. Thus, 3SAT is in NP. In fact, 3SAT is NP-complete, which will be defined 
shortly, but first we must examine polynomial-time reducibility. 

Definition 1 Polynomial-time reducibility. A language L is polynomial-time reducible 
to a language R ifand only ifa polynomial time computable function f : L* ~. L* exists 
such that: 

Vx, x E L H f(x) E R. 

What polynomial-time reduction embodies is the ability to efficiently convert strings 
recognized by one language into strings recognized by a second language. This grants 
the ability to compute answers for one language using a solution to another language. 
With this, a definition of completeness can be presented. 

Definition 2 Completeness. A language L is complete for complexity class 31 ifand 
only if: 

1. L E 31 
2. For all languages R E 91, R ~p L. 

When a language is said to be complete for a class, it means that the language is as 
"hard" as every other language in that class, as given by part 2 of the definition. If 
finding a solution to every problem in a complexity class can be reduced to solving one 
single problem, it is obviously a very difficult one. 

Now that we have become more familiarized with the nature of P and NP, let us 
examine a larger construct of important problems known as the polynomial hierarchy. 

3 The Polynomial Hierarchy 

The polynomial hierarchy in computational complexity refers to the structure of classes 
whose languages' P relations contain growing iterations of quantifiers. The hierarchy 
progresses upwards in a fashion similar to the description of P, NP, and coNP above. 
That is, P comprises the first level, and NP and coNP are the second level, as they 
are defined as an exists and a forall, respectively. The third level is comprised of one 
class that contains exactly one alternation of quantifiers, as in 3xVyP(x, y, z). Notice 
that 3x3y3zVsP(x,y, z, s) happens to be of the same complexity, since it is only the 
alternation of the quantifiers that matters. The fourth level would contain two classes 
each with two quantifier alternations, the fifth level one class with three alternations, 
and so on. 

There are three main ways of defining the polynomial hierarchy, one of which was 
briefly touched on above. For this project, we will define the hierarchy in terms of 
oracle machines. An oracle TM is a regular TM augmented with an extra tape, called 
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the oracle tape (or query tape). The query tape corresponds to a "black box" type of 
computation for a certain language (called the oracle, or oracle language) that will tell 
the oracle TM in one step whether a given string written on the query tape is in the 

oracle language or not. For example, the· class pA would be the class of languages 
with polynomial time oracle Turing Machines where the oracle is A. This appears to 
give us greater versatility and computational "power", as we may be able to include 
certain languages in an "easier" class by solving them with respect to the language A 
(and thus add only a small overhead of time). With this definition, we can now define 
the polynomial time hierarchy a second way [1]: 

Each class of the polynomial hierarchy is defined using either Lj, IIi, and 8i. The 
hierarchy is defined in the following way: 

LO = ITo 80 =P 

For all i ~ 0 

In other words, 8i+ I is the same as the class P with an oracle tape for the class of 
languages Li (which is the previous level of NP languages). Li+I is the same as the 
class NP with an oracle tape for the class of languages Li' and ITi+I is the complement 
of the current level of NP languages. When the "level" is referred to, it means the size 
of i in the inductive process, thus the level of i =3 would be 3, and the previous level 

_NpP 
would be 2. As an example, L3 = NpNY'" , , though the final P can be omitted, since 
P is a subset of NP. 

This entire hierarchy is contained inside of PSPACE, which allows for an interest
ing result from Sipser [2]. But first, another language must be outlined. 

Quantifier Boolean Formulas defines the problem of solving a boolean expression 
with quantified variables. An instance of the problem would be F = (QIXI)(Q2X2) ... 
(Qnxn)E, where E a boolean expression containing the variables Xl, X2, ... ,Xn, and each 
Qi is either "V" or "3". QBF is a PSPACE-complete language. 

Now we can proceed with the proof [2]. 

Theorem 1 There is an oracle A such that pA = NpA. 

Proof Let our oracle be QBF. Thus, NpQBF ~ NPSPACE since any nondeterministic 
oracle machine can be reduced to a nondeterministic polynomial space machine that 
directs its queries to QBF directly instead of using a QBF oracle. This is possible be
cause QBF is PSPACE-complete and therefore as "hard" as every language in PSPACE 
(which includes the polynomial hierarchy). By Savitch's theorem, NPSPACE ~ PSPACE. 
Since QBF is PSPACE-complete, PSPACE k pQBF (any language in PSPACE can be 
reduced to queries to QBF, which we can solve in constant time via the oracle). Thus, 
pQBF = NpQBF 0 

With this information, we are prepared to discuss another important idea: diago
nalization and its limits. 
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4 Diagonalization 

Diagonalization is a proof technique used to separate sets, which was first introduced 
by Cantor in 1874, its name coming from the fact that Cantor's proof process could 
be drawn as a table and the reverse (in terms of true/false) of the diagonal elements 
would comprise the separating language. Its most common form is what we will call 
"constructive separation" and in complexity theory involves the defining of a specific 
language (usually through recursion) and from there proving that this language is in 
one complexity class, but not the other. To illustrate this method, we will present a 
proof that there exists an oracle language B such that pB "* NpB [2]. 

Theorem 2 There exists an oracle B such that pB "* NpB. 

Proof Let L be a language. L = {w I 3x E B such that I x 1=1 w Il that is, L is the 
language containing all strings where a string of equal length exists in the oracle B. Lis 
in NpB since we can easily create a machine that nondeterministically finds all strings 
the same length as those in the oracle. To prove that L f/. pB, we will consider the list 
of all polynomial time oracle TMs M1, M2, ... where each Mi runs in time ni . B will be 
constructed in stages, each of which decides only a finite number of strings. 

Stage i Choose an n such that 2n > ni (meaning the total number of strings of length , 
n is greater than the running time of Mf). We will run Mf on In. At this point, there is a 
finite list of strings that have been determined to be in B or out of B. When Mi queries 
the oracle with a string, if that string's status has been determined, we will respond 
consistently. However, if that string's inclusion or exclusion has not been determined 
yet, we will respond with NO and declare it to be out of B. When we run M i on In, 
it will accept if it finds a string of length n that is in B. However, M i does not have 
enough time to query all strings of length n, since we have chosen n such that 2n > ni , 

so when M i halts (and has not found a string of length n in B), it will have to make 
a decision whether or not to accept or reject 1n. This is where diagonalization comes 
in. We will make sure any decision M i makes is wrong. This is done by expanding the 
set of strings in B. If M i accepts In, we declare every string of length n that M i did 
not qu~ry to be out of B, and therefore In cannot be in L. If M i rejects In, we find an 
unqueried string of length n and declare it to be in B, thus 1n E L. We then continue 
with stage i + 1. 

Once all stages have finished, we declare all strings left undetermined to be out of 
B. At each stage of the construction of B, every polynomial time oracle turing machine 
has failed to decide L with the oracle B. Thus, L f/. pB. Therefore, there exists an oracle 
B such that pB "* NpB. 0 

Our method of diagonalization in this proof is a constructive method, since we are 
constructing B so that no matter what any of the M's do, they cannot accept it. This is 
the basic template of constrictive separation by diagonalization: define a language us
ing a set's own properties so that this language cnanot possibly be contained in the set. 
This idea will become clearer with the definition of universal languages that follows. 
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5 Universal Languages and Kozen's Result 

Universal languages are a useful tool for dealing with classes of languages. A univer
sal language is simply a language which contains all the languages of a specific class. 
Think: of them as a large O,l-valued (binary) matrix, each row corresponding to a lan
guage, and each individual cell in the row corresponding to a single string that is in that 
language. Thus, the universal language U is the matrix [aij], where the ithe row cor
responds to a language Uj, and the jth entry is 1 or 0 corresponding to the jth string's 
inclusion or.exclusion from the language. Each universal language has a linear-time 
computable pairing function that allows us to "view" each row, as well as individual 
cells. This function is denoted as U«i, j») where i is the row and j is the desired string. 

There exists two different types of universal languages. The first is known as a 
strong universal language (or strict universal language). A strong universal language 
is one where every row corresponds to a language in one specific class. To illustrate, 
suppose U is a strong universal language for a class 3( (denoted U -e 3(). This means 
that 3( = {U«i, *») liE N}. The other kind of universal language is known as a weak 
universal language (denoted U -<> 3(), meaning that the rows corresponding to a class 
3( are still in U, but U contains more than just those rows. So U -<> 3( if and only if 
3( ~ {U«i, *») liE N}. 

Definition 3 The diagonal ofa universal language U is denoted as diagu and is de
fined as diagu(x) := 1 - Ux(x). Meaning that the diagu(x) is the opposite ofthe value 
in the cell located at the xth row and xth. 

Definition 4 A set of languages 3( differs under finite variations ifand only if (VB E 

3()(A =* B E 3( ~ A E j[) where A =* B means that A and Bdiffer on afinite number 
ofpositions [4]. 

This leads us to an important theorem from Kozen [3]: 

Theorem 3 (Kozen) Ifa class 3( is closed underfinite variations and there is a univer
sal language V such that V -e 3(, then for every L ~ 3(, there is a universal language 
U computable in V and L such that U -e 3( and L =diagu. 

What this says is that any proof of a language L's exclusion from a class 3( can be 
rewritten as a diagonalization proof, since any language not in a class that is closed 
under finite variations is the diagonal of some universal language for that class. 

This proof, when cOITlbined with theorem 1, presents a problem. Suppose that 
there is a proof of P *" NP. Kozen's result tells us that this proof can be made into 
a diagonalization proof of P *" NP. Since diagonalization proofs generally hold for 
relativized cases, it must be that pA *" NpA, but theorem 1 states that pA = NpA! So 
how do we resolve this apparent contradiction? 
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6 Final Results 

6.1 The Limits of Diagonalization for P and NP 

Our first step to resolving the contradictions between theorem 1 and theorem 3 is to 
prove that Kozen's result does in fact hold for P, since. To do this, we need to show that 
P is closed under finite variations. 

Theorem 4 P is closed under finite variations 

Proof Assume that a language L E P, and x is a string. There is machine that can 
decide the language containing just the string x. Furthermore, this machine runs in 
linear time. Since L E P, there must be a machine that decides L in polynomial time. 
Thus, we can augment L's machine with the machine that decides {xl and only add a 
linear time overhead. Therefore, there is a polynomial time DTM that decides L U {xl, 
and thus L U {xl E P. 

This same proof technique works to prove that L - {xl E P. Since {xl has a linear 
time deterministic machine that decides it, we simply replace the accept state of that 
machine with a reject state, and then augment L's machine with this new machine, 
computing L - {xl in polynomial time. Therefore, L - {xl E P. 

Thus, P is closed under finite variations. 0 

Since P is closed under finite variations and all classes have at least one universal 
language, Kozen's theorem holds for P. This means that any proof of a language's 
exclusion from P can be recast as a diagonalization proof. How do we reconcile this 
with our results from theorems 1 and 2? 

The simple answer is this: strong diagonalization does not relativize. Consider 
these theorems from [Nash, Impagliazzo, & Remmel 2003]. 

Theorem 5 There is a computable oracle A such that 3U(U -e pA) and U E NpA. 

Theorem 6 There are computable languages A and C such that 3U(U -e pA) and 
U E NpA, rJ,nd yet (NpA)C = (pA)C. Therefore, VU(U -¢ (pA)C), U fI- (NpA)c.
 

Proof Using the same A as in theorem 5, get that 3U(U -e pA and U E NpA). If we
 
let C be a PSPACEA-complete language, we can obtain the following containments:
 

(pA)C ~ (NpA)c (1) 

(NpA)c ~ (PSPACEA)c (2) 

(PSPACEA)c pC (3) 
pC 

~ (pA)c (4) 

Containments 1 and 2 hold by the definition of the polynomial hierarchy. (PSPACEA)c = 
pC since C is a PSPACEA-complete language, and therefore any language in PSPACEA 

can be reduced to queries to c. Containment 4 holds by the definition of oracles. Thus, 
(NpA)c = (pA)c, and therefore VU(U -0 (pA)c), U fI- (NpA)c, since any class in the 
polynomial hierarchy can contain a weak universal language for itself [4]. 
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This theorem shows that strong diagonalization does not relativize. Thus, we can 
conclude that the existence of oracles proving P and NP separate and equal is, in fact, 
reconcilible with Kozen's result. The reason for this is that Kozen's theorem uses 
a form of diagonalization that does not relativize, so contradictory proofs involving 
relativized cases have no bearing. 

6.2 The Limits of Diagonalization for pNP ami NpNP 

Now we will show that diagonalization's inability to separateP and NP holds for the 
level of the polynomial hierarchy directly above it, specifically i = 1. This will give us 

~2 = pNP and L2 = NpNP. 

Theorem 7 There exists and oracle A such that pNY' =NpNY'. 

Proof We will proceed as in theorem 1. Using QBF as our oracle, we get: 

NPQBF NPQBF 

NP ~ NPSPACE ~ PSPACE ~ P 

NPQBF NPQBF 

All of the containments hold as in theorem 1. Thus, P = NP , and as such 

NpNpAthere exists and oracle A such that pNpA = . 0 

Theorem 8 pNP is closed under finite variations. 

Proof We will proceed as in theorem 4. Let L E pNP and x be a string. There is 
a linear time machine that decides {x}, and a machine that decides L. By augmenting 
L's machine with the machine for {x}, we will obtain a machine that recognizes L U {x} 

NPwith a negligible linear time overhead. Thus, L U {x} E p . 
Since there is a linear time machine for {x}, there is a machine that will reject just x 

by replacing the accept state of the previous machine with a reejct state. If we augment 
L's machine with the machine for {x}, we will obtain a machine that accepts L U {x} 

with only a negligible linear time overhead. Thus, L U {x} E pNP). 

Therefore pNP is closed under finite variations. 0 

As previously stated, every class of languages has a universal language, thus pNP 

has a universal language. Since pNP is also closed under finite variations, theorem 3 
holds for pNP. 

7 Conclusion 

While the P versus NP question is still unresolved, we have refined our focus on the 
subject. Even though there is strong evidence against diagonalization's ability to sep
arate P and NP, we have shown that it this does not apply to our notion of strong 
diagonalization. Furthermore, strong diagonalization is the only way to separate these 
P and NP, as Kozen demonstrated. Finally, this limit on separational proof techniques 
extends to the second level of the polynomial hierarchy, as we have shown. 
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