The Local American Voter: Mayoral Election Turnout in Midsize American Cities

Austin Aldag
Illinois Wesleyan University, aaldag@iwu.edu

Recommended Citation
Aldag, Austin, "The Local American Voter: Mayoral Election Turnout in Midsize American Cities" (2016). Students’ Professional Presentations and Publications. 3.
http://digitalcommons.iwu.edu/student_prof/3

This Article is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
Introduction:
While the determinant factors leading to the dismally low levels of voter turnout in national and statewide elections have been well studied, nowhere is turnout lower than in local elections; a particular area of study that has yet to behave scholars. Of the limited literature on local and mayoral elections, few examine cities below 250,000 in population. Rather, many examine mega-city elections, which are comparable to congressional or statewide elections in a multitude of ways. Utilizing an original dataset of 356 mid-sized (50,000-250,000 in population) American cities from the Midwest, South, and Northeast, this study examines the drivers of mayoral election turnout: election day circumstances, stakes in the game, and socioeconomic factors and race.

Hypotheses:

Hypothesis 1: Mayoral elections that coincide with elections for other major political offices at the national or statewide level will garner higher turnout.

Hypothesis 2: The more competitive the mayoral election, the more citizens will turn out to vote.

Hypothesis 3: Cities within states that exhibit a moralistic political culture will have higher turnout in mayoral elections than cities within states with individualistic or traditional political cultures.

Hypothesis 4: Cities that have more voters with elevated stakes in the game of mayoral elections will experience higher voter turnout.

Hypothesis 5: Cities with a higher concentration of citizens from upper socioeconomic classes will garner higher turnout in mayoral elections.

Hypothesis 6: Cities with a higher percentage of non-white populations will have lower voter turnout in mayoral elections.

Method:
Stopped Ordinary Least Squares Regression of 356 Mayoral Elections

Conclusions:
The timing of mayoral elections is most critical in attracting the largest and most representative pool of voters. In fact, average turnout increased from approximately 15.47 percent to over 48 percent when off-cycle elections are compared to Presidential year elections in November; over tripling the turnout as a function of timing. Whereas other variables in this study are quite difficult or impossible to change in any American city, such as education levels, the timing of elections is a much easier institutional fix. While 243 cities in this study held their most recent mayoral election in an off-cycle year, that could be changed rather easily through local or state powers if the political will was present to do so.

Acknowledgments
I would like to especially thank three of my academic advisors that have helped at every stage of this research project:
Professor Tari Renner
Professor Kathleen Montgomery
Professor Greg Shaw

Selected References:

Austin M. Aldag
aaldag@iwu.edu

The Local American Voter:
Turnout in Mayoral Elections in Midsized American Cities

Descriptive Statistics of Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnout</td>
<td>19.22</td>
<td>12.83</td>
<td>1.32</td>
<td>72.63</td>
</tr>
<tr>
<td>Election Cycle</td>
<td>1.78</td>
<td>1.32</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Candidates</td>
<td>2.39</td>
<td>1.26</td>
<td>1.00</td>
<td>8.00</td>
</tr>
<tr>
<td>Political Culture</td>
<td>4.51</td>
<td>2.49</td>
<td>1.00</td>
<td>9.00</td>
</tr>
<tr>
<td>% > 65 pop.</td>
<td>12.12</td>
<td>3.57</td>
<td>4.70</td>
<td>27.50</td>
</tr>
<tr>
<td>% Homeowners</td>
<td>58.52</td>
<td>13.24</td>
<td>23.10</td>
<td>90.00</td>
</tr>
<tr>
<td>% Married Families</td>
<td>43.06</td>
<td>10.79</td>
<td>19.10</td>
<td>73.70</td>
</tr>
<tr>
<td>Education</td>
<td>39.72</td>
<td>14.20</td>
<td>7.50</td>
<td>76.20</td>
</tr>
<tr>
<td>% Non-White pop.</td>
<td>38.17</td>
<td>22.53</td>
<td>2.60</td>
<td>98.90</td>
</tr>
</tbody>
</table>

OLS Regression of Models on Voter Turnout (N=356)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Election Cycle</td>
<td>0.707***</td>
<td>0.710***</td>
<td>0.711***</td>
</tr>
<tr>
<td></td>
<td>(0.351)</td>
<td>(0.359)</td>
<td>(0.352)</td>
</tr>
<tr>
<td>Candidates</td>
<td>0.118***</td>
<td>0.124***</td>
<td>0.180***</td>
</tr>
<tr>
<td></td>
<td>(0.373)</td>
<td>(0.372)</td>
<td>(0.383)</td>
</tr>
<tr>
<td>Political Culture</td>
<td>0.256***</td>
<td>0.247***</td>
<td>0.213***</td>
</tr>
<tr>
<td></td>
<td>(0.188)</td>
<td>(0.179)</td>
<td>(0.182)</td>
</tr>
<tr>
<td>% > 65 pop.</td>
<td>0.122***</td>
<td>0.122***</td>
<td>0.103***</td>
</tr>
<tr>
<td></td>
<td>(0.141)</td>
<td>(0.141)</td>
<td>(0.144)</td>
</tr>
<tr>
<td>% Homeowners</td>
<td>0.173***</td>
<td>0.155*</td>
<td>0.060*</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(0.060)</td>
<td>(0.060)</td>
</tr>
<tr>
<td>% Married Families</td>
<td>-0.196***</td>
<td>-0.246***</td>
<td>-0.246***</td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td>(0.074)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>Education</td>
<td>0.078*</td>
<td>0.078*</td>
<td>0.078*</td>
</tr>
<tr>
<td></td>
<td>(0.051)</td>
<td>(0.051)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>% Non-White pop.</td>
<td>-0.047**</td>
<td>-0.047**</td>
<td>-0.047**</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.025)</td>
<td>(0.025)</td>
</tr>
</tbody>
</table>

Adjusted R²: 0.543

Sig. Level: *p<0.05, **p<0.01, ***p<0.001 – Beta value depicted above and standard errors in parentheses.