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MACROELEMENTS AND ORTHOGONAL MULTIRESOLUTIONAL ANALYSIS. 

Jonathan M. Corbett and Dr. T. X. He*, Department of Mathematics, IWU. 

Orthogonal multiresolutional wavelet analysis in a two dimension setting furnishes a basis for 
wavelet analysis. Bernstein-Bezier polynomials over simplexes provide elegant expressions of 
the necessary and sufficient conditions for a shift invariant space generating an orthogonal 
multiresolution analysis. In order to give the expressions, a formula of the inner product of two 
Bernstein-Bezier polynomials over a simplex has been derived: 

s 

<Pn ,Qn>~s = JJ Pn(x) Qn(x) dx = SlV~s LL ajbj (n!//(2n+s)! I1 (\k+ jk) 
~s jj k=1 

where V~s is the volume of the s-dimensional simplex, i = il+i2+...+is, j = jl+j2+...+js, and aj and 
bj are respective Bernstein-Bezier coefficients ofPn(x) and Qn(x). We also give the needed 
expression by using the formula above. 

1. Introduction 

1.1) Definition ofL2(R) space. 

00 

2L2(R) space is defined as a collection of square integrable functions, i.e. {fl L"lf(t) 1 dt< 

co}. L2(R) is also an inner product space in which an inner product, <f,g>, f,g E L\R); is defined. 

Here the inner product can be understood as an extension of the dot product. The inner product 

is thus an infinite summation of dot products in essence. So, 

00 

<f,g> = L"f(x)g(x)dx 

whereas the dot product is denoted as: 

n 

veg = LV·g
i=O I I. 

So, L2(R) space is defined as 

L2(R) = {fill f\2= <f,f> < oo}. 

L2(R) is also a normed linear space, in which the norm II f I = [<f,f>] 1/2 is defined. 
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1.15) Additional Definitions in L2(R). 

It is helpful to the understanding of the following sections to define a few key concepts. 

The first necessary concept is orthogonality as understood in L2(R). Two functions are 

orthogonal if their inner product is equal to zero, i.e. <fl ,f2> = O. Orthonormal sets are sets of 

normalized orthogonal elements. Therefore an orthonormal set, which has an infinite number of 

elements, can be denoted as: 

where ()ij is the delta function defined as ()ij = 0 when i:;t:j and ()ij = 1 when i=j. 

The set Ul>h, ... ,fn,..'} in L2(R) is a complete orthogonal (or orthonormal) set if and only if 

vIE L\R) , <I,fn> = 0, n = 1,2,... implies I = 0 almost everywhere. Loosely understood every 

mentioned set to be complete. By almost everywhere we mean for all XE R in the sense of 

some measurement f(x) = O. Ifx has no measurement then f(x) is not necessarily O. 

2 2We define the term dense in L (R) when refering to subspaces on L (R). We say that 

2a subspaces is dense in L\R) ifL (R) is contained in the closure of the subspaces. 

1.2) Approximation of L(R)2 by use of orthonormal sets. 

It can be shown that an orthonormal set, UI,f2,...,fn>"'}, can be used to approximate 

functions in L(Ri if it is complete. First we begin with the assumption that a function IE L2(R) 

can be expanded as: <Xl 

1= Lcn/n, where UI,f2, ...,fn>'''} is orthonormal. 
n=1 

<Xl 

We must show that I = Lcnln is true. To do so we must show that the sequence of 
n=l 

<Xl 

partial sums of series converges, and that it converges to f. We first show that the Lcnlnis 
n=1 

2 



convergent. 

•
 

n co 

Define Sn = LCJk' If the limit ofSnexists as n~oo, then Lcnin = lim Sn' To show 
k=! n=! n~co 

co 

that lim Sn does exist, we consider Bessel's inequality, which states L ICn 12 :s; I f 12. In fact we 
n=O 

consider the L2 norm of f - Sn' (Note -- for a further understanding of Bessel's inequality, see
 

reference)
 

(consider all L to run from 1 to 00 unless otherwise noted in paper)
 

co 

=Lcr>(f - LC/)(f - LcJJdx 
co 

= Lcr>(f2 - fLcJk- fLcj/j + LCJkLcj/)dx 

= <f,f> - LCk<f,f!?' - LCj<f,fj> + LLCjCk<fj,f!?' 

2 2 2 
= <f,f> - LIck 1 - LIck 1 + LIck 1 

= ifF -LIck 1 
2
. 

2 2Since II f-Sn 11 ~o, we obtain Bessel's inequality, The Bessel's inequality implies that L I Cn 1 

n 

is convergent, because I f I 2< 00, Then the sequence of partial sums Sn':= LIck 12> 0 is 
k=! 

increasing and bounded by 1f 12, It follows that {Sn'} is a Cauchy sequence. 

n 

To show that the sum Lcnin is convergent we will show that {~tfd is a Cauchy 

sequence. We have shown that for every E, there exists K such that for any n,m >K: I Sm-Sn 1< E. 

So, 

m m 
= <LcI LcI> 

j=JArj=n~!J 

3 
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m m 

= <Lc'(j,LcJI?>
j=n~ k=n+\ 

m m 

= ~Cj(Lck «j,fI?» 
J=n+\ k=n+ 

m 
2 

= L I Cj 1 < E. 
j=n+\ 

Therefore {Sn} is a cauchy sequence, so Lcnin converges. 

To show that Lcnfn converges to f we must have the orthononnal set {f\,f2, ... ,fn,"'} to 

2be complete in L (R) as previously defined. Because Lcnin converges, let g= Lcnin, 

where Cn= <f,fn> for each n. So, 

=0. 

co 

Since f-g = 0 almost everywhere, f=g. Therefore Lcnfn converges to f when {f1,f2,...,fn, ...}is a 

complete orthononnal sequence. 

1.3) Wavelets 

A wavelet is defined as a single function with the property that the set of its dilations and 

translations,\jImn = {2m12\j1(2mt_n)}, give a complete orthogonal (not necessarily but possibly 

orthononnal) basis ofL\R). 

1.4) Examples of complete orthogonal bases ofL2 

A) Trigonometric complete orthogonal system in L2(-7t,7t). 

L2(-7t,7t) has a complete orthogonal basis {f\,f2,... ,fn,...}, where fl = 1/2, f2 = sin x, f3 = cos x, 

f4 = sin (2x), f5 = cos (2x), .... The inner product <fn,fm> is defined by L
1t 

lt fnfmdx = 0 When n;t:m 

4 
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we can find a sum L:cnfn = L:<f,fn>fn that converges to f. 

B) Wavelet Function 

The Haar wavelet is denoted by <pet) and is defined as: 

<pet) = X[O,l](t), 

where X[O,lj is the characteristic function defined as 1 on t = 0 to 1 and 0 elsewhere. 

The collection of its translations defined by <p(t-n), ne N, is an orthogonal system due to no 

overlap in translation; i.e. <<p(t),<p(t-n» = 0 when n:;t:O. However, this system is not complete 

because <p(t-n) is not dense in L2(R). 

m12
We use the function <Pmn(t):= 2 <p(2mt_n). Then <Pmn(t) = 1 when 2·

m
n.:s; 1< (n+1)2·mand 

<Pmn = 0 elsewhere. Since any function in L2(R) can be approximated by piecewise constant 

functions that may have the jump at binary rational numbers, {<Pmn }is a complete system in 

L2(R). However {<Pmn} is not an orthogonal set. 

To construct a complete and orthogonal system in L2(R), we define a new function: 

m12\jI = <p(2t) - <p(2t-l). The set {\jImn = 2 \j1(2
m

t_n)} is a complete orthonormal system in L2(R). 

The system is complete because function in L2(R) can be expanded in <Pmn(t). The system is 

orthonormal, which is confirmed by observation of the inner product <\jImn,\jIu2 defined on the 

system. 

00 

ml2 m lIt (21 k d<\jImn'\jIlk> = J-«j2 \jI(2 t -n)2 \jI t-) t 

00 

=im+l)/2J-«j\jl(2mt-n)\jI(it-k) dt 

00 

= 2(m+I)/2LQ\jI(t')\jI(i-m(t'+n)-k) 2·mdt' 

00 

m= i +1)/2J-«j\jl(t)\jI(i-m(t+n)-k) Tmdt 

00 

= 2(m+I)12J-«j\jl(t)\jI(i-m(t+n)-k) 2·mdt 

5 



Now when t< 0 or t ~1, 'V(t)=O, when 0::; t< 112, 'V(t)=1, and when 112::; t< 1 'V(t)=-1. Thus, 

00	 In I 
/2J2(1-m)/2Loo'V(t)'V(21-m(Hn)-k) dt = 2(1-m) 'V(i-m(Hn)-k)dt - 2(1-m)nLn'V(i-m(t+n)-k)dt.o

1/2 I 

Ifl:;t:ffi, the integrals are zero.	 When l=m, we have Io'V(Hn-k)dt - II/2'V(Hn-k)dt. Ifn:;z!:k, the 

1/2 I 

expression is equal to zero. Ifn=k, we have Io'V(t)dt - JI/2'V(t)dt = 1. Thus 'Vmn is orthonormal. 

2 2Since 'Vmn is a complete orthonormal basis ofL (R), for every fEL (R), we have the series 

IX) CtJ CtJ CtJ 

EBEBcmn'Vmn = EBEB <f,'Vmn(t»'Vmn(t) = f. If the approximate series begins from some m, then the 
ffi,n =-00 ffi,n=-CtJ 

~Ioo 0000	 00 

series can be written as: EBEBCkn'Vkn + EBEBckn'Vkn' We define Wm= EBcmn'Vmn for a fixed m. We 
k,n=-oo k=m n=-«>	 n=-oo 

moo 
define Vm= EBEBckn'Vkn' Vm+l = Wm+1 EB Vm' where EB denotes orthogonal union. 

k,n =-00 

2. Multiresolutional Analysis 

A multiresolutional analysis, denoted MRA, is a space denoted Vm' which is the span of 

{~mn }. We define ~ as a scaling function whose translates form a complete orthogonal basis of 

Vo(span of {~On}' translates of ~ with no dilation). For multiresolutional analysis, we begin 

with a scaling function ~, which is a real valued function on R and generator of a 

2multiresolutional analysis ofL (R) as follows:(Given by Walter [10]) 

(i)	 {~(t-n)} is an orthonormal basis ofVo
 

2
(ii) ... cV_1cVOcV1 c ...cL (R) 

(iii) Jet) E Vm¢:> /(2t) E Vm+1
 

L2
(iv) nVm = {O}, uVm = (R)
 
m m
 

When there is a set of compactly supported functions which translate to form an orthogonal basis 

ofVowe say that (Vm) is an orthogonal multiresolutional analysis(MRA). If the functions which 

form Vo are continuous we say that (V~ is a continuous multiresolutiona1 analysis(MRA). 

For univariate cases, when (V~ is an orthogonal MRA it is possible to generate 

6 



compactly supported wavelets that create an orthogonal basis ofWo. To achieve this,. one must 

find the orthogonal scaling functions. 

3) Orthogonal Finite Shift Invariant Spaces 

Let eD be a subset ofL\R) and 'teeD) = {$(t-n) InEZ, $EeD} give the set of integer 

2translates of elements in eD and let creeD) be the L closure of the linear span of't(eD). Then 

2Vc L (R) is a space called a finitely generated shift-invariant (denote FSI) space when V = creeD) 

for a finite set eD. If Vp is a MRA which is generated by r scaling functions, then Vp is a FSI 

space generated by 2Pr generators (refer to [3]). 

4) Macroelements and their Bezier Coefficients 

4.1) Definition of Bernstien Bezier coefficients. 

We are able to define the functional value ofa quadratic polynomial in in terms of 

Bemstien Bezier coefficients (denote Bezier Coefficient). We start by defining the 

baryocentric coordinate system. This coordinate system is defined over a triangle. We 

give the coordinate values of the three vertices Vo = (1,0,0), V I = (0,1,0), and 

V2 = (0,0,1). Any point lying within the triangle can have its coordinates expressed in 

terms of this coordinate system. The triangle is subtriangulated into three subtriangles by 

connecting the chosen point with each vertex (see Figure 4.1.1). Then the areas of the 

subtriangles, ao, ab and a2 are found. The coordinates of the chosen point are then given 

by (aJA,ar!A,aiA), where A is the area of the triangle with vertices Yo, Vb V2. This 

gives us the baryocentric coordinate system. Thus we can express a point (x,y) in tenps of 

baryocentric coordinates as follows 

(x,y) =ulVO+ U2VI + U3V2, 

where UI + U2 + U3 = 1. 

7 



• 

Vo 
Figure 4.1.1 

We can express a quadratic polynomial, P(x,y) in tenns of it baryocentric 

coordinates by use of what are called Bezier coefficients. We express 

Bezier coefficients with respect to P(x,y). 

4.2) Definition of Macroelements 

A macroelement is a piecewise function defined over a triangle under some 

subtriangulation (triangular partition). Macroe1ements can be used to interpolate the given 

function values and two partial derrivative values at the three vertices of the triangle. 

4.3) Definition of C1 continuity 

For a function to have C1 continuity, it must be differentiable all its first partialderivatives 

are continuous. Macroe1ements must be C1 continuous over the interior and the edge. 

4.4) Refinement of Macroelement 

It is possible to use Bernstein-Bezier polynomials to generate smooth surfaces. Piecewise 

quadratic polynomials are the splines with the lowest possible degree and C1 continuity. 

Macroe1ements are splines defined on a triangular region T. There are two main steps for 

construction of C1 macroelements on T. First is to split the triangle into twelve subtriangular 

regions by using the three medians and line segments connecting the midpoints edges on T. 

8 



,. " '/ 
\ ..... ,, / 

, _ ">t.... ,- ......- ..; ........ __ . , I / .......... 

\ I " ..........
' 

Next, to construct a quadratic element in each subtriangle under this division, use functional and 

first partial derivative values with respect to x and y at the three vertices ofT. We denote this 

subtriangulation as the CI quadratic twelve-subtriangular macroelement. 

Let the triangle T =(VI,V2,V3), where Vi = (Clj,bi), i = 1,2,3. T is divided into twelve 

subtriangles as shown in Figure 4.4.1, where the medians VIV23' V2V31> and V3V 12 and the line 

segments V 12V23, V23V31> and V31V I2 are used in the subtriangulation. The medians are given 

by: 

• 

l/.2 ./ .......... T'
4::- --:~ --.......::...~ Y3
 

\/23 

Figure 4.4.1 

A quadratic polynomial defined on the triangle (Vl,v2,V3) can be expressed in terms pf 

its Bezier coefficients aj, and the baryocentric coordinate system (x,y) = ulA + u2B + U3C as: 

We will use the following parameters defined on T: di, mi, nj, and Pi. For i = 1,2,3 use di 

to denote the function value at Vj, mi to denote the first partial derivative with respectto x at Vj, 

and ni to denote the first partial derivative with respect to y at Vi- For I = 1,2,3 define Pi as 

follows: 

9 



PI =DkI!(V12), 
P2 = Dkl.!(V23), 
P3 =Dk3f(V31), 

denotes the derivative of f with respect to k given by 

DJ= k.Vf =kl(Df!DX) + k2(DfIDy). 

Thus, PI,' P2' and P3 are normal derivatives at the midpoints of the edges V IV2, V2V3' and V3V I 

ofT, respectively. 

V2 ~~ ~72..:.3 , __________~ t'J 

Figure 4.4.2 
As shown in Figure 4.4.2, we can express all of the Bezier coefficients of the quadratic 

twelve subtriangulation macroelement on T. The respective Bemstien-Bezier coefficients 

shown in the subtriangulation are:(given by Chui and He [1]). 

Yo. =d· + 1/4[m·(a·-::lo) + no(b·-bo)]I:J I I]'" 1)1' 

10 
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Where i,j = 1,2,3, and k is the complement of {iJ} whenever i '¢ j. The expressions necessary for 

finding the partial derivatives are: 

(a\-az) 8/8x feY 12) + (bl-bz) 8/8y feY 12) = 2Dvl-vI2f(V12) 
(bl-b2) 8/8x feY 12) - (al-az) 8/8x feY 12) = PI 

(ara3) 8/8x feY23) + (br b3) 8/8x feY23) = 2Dv2-v2J!(V23) 
(br b3) 8/8x f(V23) - (ara3) 818x f(V23) = P2 

(aral) 8/8xf(V31) + (brbl) 8/8xf(V31) = 2Dv3-v3J!(V31) 
(brbl) 8/8x feY31) - (aral) 8/8x feY31) = P3' 

5) Generating FSI over Simplexes 

5.1) MRA in higher dimensions 

For a given vector space in Rn with el;...,en independent vectors, then a sequence 

of nested closed linear subspaces (VnJ in L2(R) is a MRA of multiplicity r and dilation N if: 

1) fEYm <=:> fCN-mt)EVofor N,mEZ, N >1 

23) uVm is dense in L (R)
 

4) There exists a set of r functions, $1>" Ar> such that the set oflattice translates
 

by Donovan, Geronomo, and Hardin [2]). 

To satisfy these conditions, it is necessary to have the set of scaling functions .$l>o.. ,$r> 

generate the MRA. If there is a set of scaling functions whose lattice translates create an 

orthogonal basis of Vo we say that (Vm) is an orthogonal MRA. 

To construct a set of scaling functions that satisfy the preceding properties, we have 

11 
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derived a useful formula: 

<Pn,Qn>t.S = JJ Pn(x) Qn(x) dx = S!Vt.S LL ajbj (n!)2/(2n+s)! ~ (ikik+ jk), S=2 
t.S j j k=1 

where Vt.S is the volume of the s-dimensional simplex, i = il+i2+...+is, j = j l+j2+...+js, and aj and
 

bj are respective Bemstein-Bezier coefficients of Pn(x) and Qn(x).
 

5.2) Derivation of Inner Product Formula
 

We have two piecewise polynomials Pn(x) = Iai~t(l...) and Qn(x) = Ibj~jn(A) where ~t(l...)= nlli!
 

Ai , ~t(A) = nlli! Ai, A= (AI> A2, A3), i = il+i2+i3, j = jl+j2+j3, and aj and bj are respective
 

Bemstein-Bezier coefficients of Pn(x) and Qn(x).
 

where dxdy = 10x!OAI 0x!OA2 IOAI OA2 = I XI-X3 X2-X3 I OAI OA2 = Vt. OA1OA2 . 
10Y/OAI OY/OA2 I I YI-Y3 YrY3 I 

Since, 

we have 

=2Vt.II: aibj [(n!)2/(i! j !)][ «i2+j2)! (2n-(i l+j 1)+1)!)/(2n+2)!][ «il+j 1)!(i3+j3)!)/(2n-(il+j 1)+1)!] 
j j 

=JJ Pn(x) Qn(x) dx = S!Vt.S LL ajbj (n!i/(2n+s)! b(ikik+ jk),
t.S j j k=1 

12 



where s=2. 

5.3) Application of Inner Product Formula In generating MRA. 

Using an example given by Donovan, Geronomo, and Hardin (refer to [3]), we can 

rework the example using our derived formula for ilIDer products. Let ~k+l>''',~r be spaIIDed by 

the function gl and ~I>""~k be spanned by go. We find that <gO,gl> ;;t. 0, thus we must introduce a 

scaling function 0) such that go and gl are orthogonal i.e. 

This above formula was given by Donovan, Geronomo, and Hardin as means of generating
 

scaling functions necessany for a two dimensional MRA.
 

The formula for computation of <Pn(x),Qn(x» .1S is utilized to provide the respective ilIDer
 

products.
 

2
Consider the equilateral lattice Lin R generated by vectors el = (1,0) and e2 = (112;"312). 

We let 11 denote the triangle with vertices (0, eb e2) and 11' denote the triangle with vertices 

(el> e2' el+e2)' We let r be the reflection across the common edge of the triangles. We allow T to 

be the triangulation that consists of 11 and 11'. We define h to be the hat function of the lattice, 

that is h is a piecewise linear function on T and h(iel + je2) = 1\0 OJ,o, An orthogonal MRA is 

generated from h. 

We have that 0) is expressed as a linear combination ofheUij' O)eUij , and O)ereuij where 

2
Uij(x) = 3x - iel - je2 and 'tij = X - iel -je2 for all xER . 

We let go = hX.1 , g I = he't1,0 X~, and g2 = he'to,l X.1' where X.1 denotes the characteristic 

function on 11. We can compute the following ilIDer products: 

<h,I>.1 = 2AL:Iajb (n!)2/(2n+2)! (it il+jI)(i2j2+j2)(i3 / 
j3)j j1,2,3 

= 2(-Y3/2)'L ai (1I4!)(i\I+I)(i2i/l)(i3 j/l) 

13 
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1,2,3 

= 2(-V3/2)(1/4!) I ai e/1)(00+1)(00+1)
1,2,3 

= 2(-V3/2)(l/4!)(1 +0+0)(2)(1)(1) 

= -V3/12 
and, 

<h,h>l'. = 2A~Iaibj (n!//(2n+2)! (i\t jl)(i2i/ 
j2)(i3j3+j3) 

I J 

= 2(-V3/4)(1/4!)Iai [1]
1,2,3 

= (-V3/2)(1/4!)1 

=-V3/24. 

Hence, <h,l> = -V3/2 and <h,h> = -V3/4. Likewise <go,gl> = -V3/48 can be shown. 

Because co satisfies a nonhomogeneous dilation equation, it can be expressed in the form: 

co = heul,1 + LSij coeUij + LS'ij coereuij 
(i,j) EQ (i,j) EQr 

where Q = {(0,0),(0,l),(1,0),(1,1),(0,2),(2,0)} and Qr= {(0,0),(1,0),(0,1)}. 

For co to be continuous, ISij I < 1 for (ij)EQ and IS'ij I< 1 for (i,j)EQr' Also because co 

must be symmetric with respect to rotation leaving !:i. fixed, we must have: 

so,o = S2,0 = SO,2 = Sl 
SO,I = SI,O = SI,1 = S2 
S' 0,0 == S' 1,0 = S' 0,1 = s3' 

<co 1> = <heUII 1> + Is· ·<coeu·· 1> + Is'· ·<coereu·· 1> , , , Q lJ IJ' Qr IJ lJ' 

= 1/9«h,1> + Isij<co,l> + LS'ij<co,l» 
Q Qr 

3 

= (1/9) <h,l> + (1/3) (Isi) <co, 1>. 
1=1 

3 

Solving for <co,l> yields: <co,l> == (1/3)<h,1>/(3-~si)' 
i=1 

Since Xl'. = go + gl + g2 , we have: <co,go> = (1/3) <co, 1>. 

<co ,co> is calculated in a similar fashion: 

14 



<ro,ro> = <heUI I> heUII> + 2ISiJ,<roeUiJ" heUII> +2 IS'iJ,<roereUiJ" heUI 1> 
, , Q ' Qr	 ' 

+ I(Siji<roeUij, roeUij> + I(S'i)2<roereUij,roereUjj > 
Q	 Qr 

= l/9«h,h> + 2ISjj<ro,he'tl_i,I-j> + 2Is'ij<roer,he'tl_i,l_j > + I(Siji<ro,ro> + I(S'iji<ro,ro» 

3 

= (1/9)«h,h> +6s2<ro,go> +6s3<ro,go> + 3I(si <ro,ro». 
i=1 

3 

<ro,ro> = ((1/3)<h,h> + 2 (S2 + S3) <ro,go>)/( 3-L(si). 
i=1 

The equation from above, given by Donovan, Geronomo, and Hardin 

• 

can be satisfied. 

=0. 

For ro to be continuous, ISj 1<1. Values can be found where Sl, S2, and S3 fufill the 

above stated criteria. The values of the Sj, 1=1,2,3 are used to find an ro such orthogonal 

scaling functions, ~I, ~2, ~3, can then be found. 
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