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Chapter 1 

INTRODUCTION 

In this paper we will be examining certain stability properties of autonomous 

systems. Suppose then that we are dealing with a system of the form 

X' = f(x) 

x(O) = XQ. 

Here f : B ---+ R, where B ~ Rm. Lyapunov (whose work is described 

in [7] and [12]) and LaSalle [8-12] have developed stability results for the 

continuous and discrete cases. The results given here include these as special 

cases. This greater generality is accomplished by means of the calculus on 

measure chains developed by Aulbach and Hilger [2, 6]. 

3 



• 

It was in 1892 that Lyapunov published his paper giving his "second 

method". The basic guiding principle was that we might be able to know 

something about the stability of the system from the form of the equations 

describing it. Specifically, the idea was that it would not be necessary to 

know the solutions of the equations involved. This is of course very useful 

since in most cases solutions are extremely difficult or even impossible to 

find. Lyapunov's insight was that if a function could be found with, among 

other properties, a negative rate of change along the solution of the system 

except in the equilibrium case, then disturbances from the equilibrium so­

lution would return to that solution. (In the equilibrium case, the solution 

is constant.) The kind of function involved is called a Lyapunov function, 

and it is defined in such a way that it mimics the energy function. In fact, 

it was the energy function which originally inspired these ideas. There is an 

intuitive physical appeal about the assertion that systems that lose energy 

"fall" to an equilibrium state. And in many cases, the expression for energy 

ends up being our choice for Lyapunov function. The historical data above 

can be found in [5]. 

Lyapunov's method is extremely valuable, since it enables us to reach 

conclusions about stability without obtaining explicit solutions. The dis­

4 



-
advantage is that finding an appropriate Lyapunov function can often be 

very difficult. In response to this fact, LaSalle produced an extension of 

Lyapunov's method in the early sixties. In this extension, LaSalle used the 

notion of limit sets (sets of limit points) and the notion of invariance (the 

property of certain sets whereby a given function takes elements in the set 

to elements in the set). By introducing these notions, LaSalle was able to 

show how Lyapunov functions could be defined less restrictively. His Invari­

ance Principle is the invariance-and-limit sets version of Lyapunov's theorems 

describing his method. LaSalle has produced both discrete and continuous 

versions of his Principle. 

The measure chain calculus was developed in response to the previously 

disunified state of analysis. Before the calculus on measure chains, results de­

veloped in the continuous calculus had to be independently confirmed in the 

discrete calculus, and vice versa, or else it was assumed without justification 

that results obtained in one case would apply in the other. Also, there was no 

method of dealing with functions defined on sets that were partially discrete, 

partially continuous. Thus it was that Drs. Aulbach and Hilger developed 

the concept of a measure chain, defined axiomatically, and derived a calculus 

for these chains. Specifically, they developed some preliminary items, such 
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as an induction principle, and proceeded to invent notions of derivative, in­

tegral, and continuity. They proved, among other things, a measure chain 

version of the mean value theorem. 
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Chapter 2 

STABILITY 

2.1 Lyapunov's Second Method 

The material in this section is based on [4]. Consider an arbitrary au­

tonomous system, i.e. one of the form 

y' = f(y) 

where f and ofJOYj, j = 1,2, ... , n, are continuous in a region D of n­

dimensional space. Assume that D contains the origin, and our goal shall be 

to find stability conditions for the zero solution. This is in fact no restriction 

at all, since a translation can always be effected if D does not contain the 

origin. 
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Consider a continuous scalar function V (y) defined on some region 0 

containing the origin. Recall that V is said to be positive definite on the 

set 0 if and only if \iy E 0 V(y) > 0 for y =I- 0 and V(O) = O. Recall also 

that a scalar function V(y) is said to be negative definite on the set 0 if and 

only if - V (y) is positive definite on O. For example, in 3-space the function 

V(y) = yi + y~ + y~ is positive definite on the whole space. On the other 

hand, V(y) = yi is not positive definite, since it is zero everywhere on the 

We shall now define the derivative for the purposes of this discussion. 

Definition 1 The derivative of V with respect to y is i' (y) =grad V (y) . 

f(y) = aav (y)h(y) + ... + a8V (y)fn(y), where fl' ... , fn are the components of
Yl Yn 

f· 

Example: 

Consider the case (in the plane) of 

,
Yl = Y2 

8 
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In this case we obtain 

• 

We must now define some notions of stability. 

Definition 2 We shall say that a zero solution to our system is stable if 

VE > 0 36(E, to) > 0 such that Ilxoll:::; 6 =? 11<I>(t;xo,to)ll:::; EVt ~ to. Here 

<I>(t; xo, to) represents the solution w.r.t. some initial values Xo, to. 

Definition 3 Likewise, we shall say that the zero solution is asymptotically 

stable if it is stable and if3r(to) > 0 such that VIJ > 0 3T(IJ, Xo, to) such that 

Ilxoll :::; r(to) =? ll<I>(t; Xo, to) II :::; IJ Vt ~ to + T. 

We are now ready to give Lyapunov's major results, which we shall present 

without proof. They are: 
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Theorem 1 If there exists a scalar function V (y) that is positive definite 

and for which 11 (y) ~ 0 on some region n containing the origin, then the 

zero solution of y' = f (y) is stable. 

Theorem 2 If there exists a scalar function V (y) that is positive definite and 

for which 11 (y) is negative definite on some region n containing the origin, 

then the zero soluion of y' = f(y) is asymptotically stable. 

Example: 

Consider the equation u" + g(u) = 0, with g continuously 

differentiable for lui < k, and ug(u) > 0 if u #- O. \Ve can write 

this as a system of first-order equations: 

,
Yl = Y2 

Consider the function 

(This choice is motivated by physical considerations; it mimics 

the energy function. The first term represents kinetic energy; 

10 
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the second represents potential energy.) The function is positive 

definite on 

Moreover 

Thus V satisfies the conditions of our Theorem 1, and we conclude 

the zero solution is stable. 

Example: 

Consider Lienard's equation 

u" + u' + g(u) = 0 

which can be written as 

,
Yl = Y2 

where 9 is as in the previous example. Things proceed much as 

before if we take the same V, except that the derivative of V be­

11 
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comes -Y2 2 . We can again conclude stability, but not asymptotic 

stability. 

But in fact we rather imagine we have asymptotic stability. 

This is an example of where things can go wrong in Lyapunov's 

method. 

2.2 LaSalle's Invariance Principle 

2.2.1 Discrete Case 

Introduction and Basic Notions 

In this section, we turn to LaSalle's Invariance Principle. All material in this 

subsection and the next is based on [11] unless otherwise noted. LaSalle has 

developed this principle for both the continuous and discrete case. We will 

take the discrete first. In the discrete case, we have the simpler of the two 

situations. Solutions will always be bounded. As LaSalle says, "very little 

is required other than an understanding of convergence and continuity, and 

there are no troublesome questions concerning the existence and domain of 

definition of solutions." 

Let the following conventions hold: 
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Let J be the set of all integers. 

Let J+ be the set of all nonnegative integers. 

Let Rm be real m-space, with Ilxll the Euclidean norm. 

Let x : J+ -----+ Rm. 

Let x'(n) = x(n + 1). 

Let :i; = x' - x. 

Let T : Rm -----+ Rm. 

Consider then the initial value problem 

x' = Tx, x(O) = Xo. (2.1) 

Its solution is of the form 

where Tn is the nth iteration of T and TO = I, the identity mapping. 

Definition 4 We define a discrete dynamical system on Rm as a mapping 

7f : J+ x Rm -----+ Rm such that \In, k E J+ and \Ix E Rm, 

i) 7f(O, x) = x 

ii) 7f(n, 7f(k, x)) = 7f(n + k, x) 

iii) 7f is continuous. 

13 
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As LaSalle puts it, "Every difference equation defines a dynamical system 

7f : 7f(n, Xo) = Tn xo , and, conversely, every discrete dynamical system has 

associated with it the difference equation (2.1), where T(x) = 7f(1, x)". A 

very good discussion of dynamical systems can be found in [13] and [14]. 

Some basic definitions: 

Definition 5 The distance of a point x from a set S is represented as p(x, S) 

and is defined to be inf{ Ily - xii: YES}. 

Definition 6 The closure of a set S is represented as S and is defined to be 

{x: p(x, S) = O}. 

Definition 7 A set S is closed if S = S and open if its complement is closed. 

LaSalle's principle is based in large part on the notion of a limit set, the set 

of all subsequential limit points of Tn xo . Under conditions of boundedness, 

this set will turn out to be invariant. 

Definition 8 We say that a point y is a limit point of Tn x if there is a 

sequence of integers ni such that Tni x ---+ y and ni ---+ 00 as i ---+ 00. The 

limit set rl(x) of the motion Tnx from x is the set of all limit points of Tnx . 

Definition 9 We say that a set H is positively invariant if T(H) ~ H, 

negatively invariant if H ~ T(H), and invariant ifT(H) = H. 

14 
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Definition 10 We say that a closed invariant set H is invariantly connected 

if it is not the union of two nonempty disjoint closed invariant sets. 

Preliminary Results 

We now turn to some preliminary results we shall need III the proof of
 

LaSalle's Principle.
 

Theorem 3 Every limit set D(x) is closed and positively invariant.
 

PROOF: 

By definition of a limit point, each point of distance 0 from 

D(x) is itself a member of D(x) (subsequences would approach 

such a point indefinitely). Hence D(x) is closed. Consider an 

arbitrary y E D(x). By definition of D(x) there exists a sequence 

of integers ni such that ni ~ 00 and Tni x ~ y as i ~ 00. 

Since T is continuous, we have T(Tnix ) = Tni+1X ~ Ty. Thus 

Ty E D(x). Thus D(x) is positively invariant. Thus every limit 

set D(x) is closed and positively invariant. I 

Theorem 4 If Tn is bounded for n E J+, then D (x) is nonempty, compact, 

invariant, is the smallest closed set that Tn x approaches as n ~ 00, and is 

invariantly connected. 

15 



PROOF: 

Since Tn x is bounded, O(x) cannot be empty. Moreover it 

must be bounded and, by the preceding result, closed. Thus by 

Heine-Borel it must be compact. Consider an arbitrary y E O(x) 

and select ni as in the proof of theorem 1. \V.l.o.g. assume T n i-
1X 

converges, say to z. Then T(Tni-1 x) = Tnix --+ Tz = y. Thus 

O(x) is negatively invariant, and hence by Theorem 1 is invariant. 

We shall show that D(x) is the smallest closed set that Tn x 

approaches as n --+ 00. Since p(Tnx , D(x)) is bounded, there is a 

sequence ni such that ni --+ 00, Tnix converges, and p(Tnix , D(x)) 

does not approach 0 as i --+ 00. This is a contradiction, so we 

conclude that Tn x --+ D(x). Suppose now that Tn x --+ E as 

n --+ 00 and E is closed; then D(x) ~ E. Thus D(x) is the 

smallest closed set that Tn x approaches as n --+ 00. 

We shall now show that D(x) is invariantly connected. Sup­

pose that it were not. Then D(x) is the union of two disjoint 

closed nonempty invariant sets D1 and D2 . These subsets will 

be compact: they are closed and, being subsets of a bounded 

set, bounded. There exist disjoint open sets U1 and U2 such that 

16 
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0 1 C U1 and O2 C U2 . Now T is continuous and 0 1 is compact, so 

that T is uniformly continuous on 0 1 . Thus there is an open set 

Vi such that 0 1 C ~/l and T(Vl) CUi' Since O(x) is the smallest 

closed set that Tn x approaches, Tn x must intersect both Vi and 

U2 an infinite number of times. But then there exists a cover­

gent subsequence Tni x that is not in either Vl or U2 . Since O(x) 

~ Vi U U2 , we have a contradiction, and hence O(x) is invariantly 

connected. 

I 

The Principle Stated and Proved 

We now turn to LaSalle's extension of Lyapunov's work. Let V : Rm ---t R. 

The derivative of V will be defined in the following way. 

Definition 11 The derivative has the form V(x) = V(T(x)) - V(x). 

(This is relative to our system.) The idea is that we could compute this 

derivative without a knowledge of solutions-that we could compute it purely 

from a knowledge of the right-hand side of our original equation, x' = Tx. 

Definition 12 We call V a Lyapunov function of (2.1) on G if V is contin­

uous and V(x) ::; 0 "Ix E G. 

17 



•
 

Two sets will need to be defined. The first is E = {x : V(x) = 0, x E G}. 

The second is M, the largest invariant set in E. 

Theorem 5 (LaSalle's Invariance Principle) If (i) V is a Lyapunov func­

tion of (2.1) on G, and (ii) x(n) is a solution of (2.1) bounded and in G for 

all n ~ 0, then there is a number c such that x(n) -+ M n V- 1 (c) as n -+ 00. 

PROOF: 

By our assumptions, V(x(n)) is nonincreasing with n and is 

bounded from below, so that there exists a real number c such 

that V(x(n)) -+ c as n -+ 00. Consider an arbitrary y E O(xo). 

There is a sequence ni such that ni -+ 00 and x(ni) -+ y. Since 

V is continuous, V(x(ni)) -+ V(y) = c. Thus, O(xo) ~ V- 1 (c). 

Since O(xo) is invariant, V(Ty) = c and V(y) = 0. Therefore 

O(xo) ~ E. Therefore O(xo) ~ M.By the foregoing, it follows 

that O(xo) ~ !vI n V- 1 (c). Since x(n) -+ O(xo), x(n) -+ M n 

V- 1 (c). I 

Example: 

18 
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Consider the system 

ay(n)
x(n + 1) = 2( )1 +x n 

bx(n)
y(n+ 1) = 2( )"1 +y n
 

Let V(x, y) = x2 + y2. Then
 

b2 2
 
• 2 (a 2V(x, y) = ( 2 - l)x + 2 - l)y . 

(a + y2) (1 + x2) 

In fact there are four cases to be considered here; we will 

deal with one partly, and one in detail. The first case is that 

of a2 < 1, b2 < 1. This reduces to Lyapunov's standard case. 

The second case is that of a2 S; 1, b2 S; 1 and a2 + b2 < 2. We 

2may assume that a < 1 and b2 = 1. \l is a Lyapunov function 

everywhere. Here V S; (a2 - 1)y2, and E is the x-axis. Also 

T(x,O) = (0, bx), so that fl,1 is the origin, and the origin is hence 

2asymptotically stable. The remaining cases are a = b2 = 1, 

where we have approach to the origin or to a periodic motion, 

2and a > 1, b2 > 1, where we do not have approach of any kind. 

We now consider the question of stability; we require a differently formu­

lated definition, which parallels that given previously. 

19 
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Definition 13 A set H is said to be stable if for each neighborhood U of 

H (an open set containing H), there is a neighborhood W of H such that 

Tn(w) ~ U for all n E J+. 

Definition 14 A set H is an attractor if there is a neighborhood U of H 

such that x E U implies Tn x --+ H as n --+ 00. H is said to be asymptotically 

stable if it is both stable and an attractor. 

Definition 15 The region of attraction R(H) of a set H is the set of all x 

such that Tnx --+ H as n --+ 00. 

We then have the following theorem, which we present without proof. 

Theorem 6 Let G be a bounded open positively invariant set. If V is a 

Lyapunov function of (2.1) on G, and M ~ G, then M is an attractor and 

G ~ R( M). If, in addition, V is constant on M, then M is asymptotically 

stable. 

2.2.2 Continuous Case 

Introduction and Basic Notions 

In the continuous case, things become somewhat more complicated. Most 

importantly, solutions can "blow up" in finite time.	 Also, solutions can go 

20 
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forwards or backwards in time. Because of these and certain other changes, 

it is necessary to introduce a notion of "precompactness", which requires 

that solutions be not only bounded but also that it have no limit points of 

a certain kind on the boundary of the domain of the right-hand side of the 

differential equation. In all other respects, however, development is parallel. 

Indeed, this very fact suggests that the Principle is ripe to be put on measure 

chains. 

Let f : G* ---+ Rn, where G* is an open set in Rn. Assume f to be 

continuous. Our differential equation will be of the form 

~~ = x = f(x), x(O) = xo. (2.2) 

Solutions are exactly associated with dynamical systems (as explained in 

the last section, although the definition of dynamical system is different here 

as shall be seen). Thus, we may write the solution as n(t, xo). The solution 

to the above equation for the given initial value will be assumed unique. 

It will be necessary to introduce two kinds of limit points here. 

Definition 16 Let 1J : (0:, w) ---+ G*, where -00 ::; 0: < 0 < w ::; 00. A 

point p is said to be a positive (negative) limit point of 1J if there is a sequence 

tn E (0:, w) such that tn --t w (tn --t 0:) and 1J(tn) --t P as n --t 00. The set 
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D(¢) (A(¢)) of all positive (negative) limit points of ¢ is called the positive 

(negative) limit set of ¢. 

Definition 17 The interval (0:, w) is said to be maximal if w finite implies 

D(¢)nG* is empty and if 0: finite implies A(¢)nG* is empty. 

Our definition of a dynamical system will be as follows. We first introduce 

the idea of a local dynamical system. 

Definition 18 A local dynamical system is a mapping 1f with the following 

properties: 

i) Each solution 1f (t, x) of (2.2) satisfying 1f (0, x) = x has for each x E G* 

a maximal interval of definition I(x) = (o:(x), w(x)), -00 :::; 0: < 0 < w :::; 

00. 

ii) Vs E I(x) Vt E I(1f(s, x)), t+ s E I(x) and 1f(t,1f(s,x)) = 1f(t+ s,x). 

iii) 1f is continuous, i.e. if (tn, xn) E I(xn) X G* and (tn' xn) ---+ (t, x) E 

I(x)	 X G*, then 1f(tn,xn) ---+ 1f(t, x). 

iv) I(x) is lower semicontinuous on G*, i.e., if X n ---+ x E G*, then I(x) ~ 

lim inf I(xn) = U~=l n~=k I(xn). 

Definition 19 A dynamical system is a local dynamical system such that 

Vx E G* I(x) = (-00,00). 

22 
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It shall be necessary to introduce a notion of precompactness. This plays 

the same conceptual role as boundedness did in the discrete case. 

Definition 20 A solution 1r(t, x) is said to be positively (negatively) precom­

pact if it is bounded for all t E [0, w(x)) ((o:(x), 0]) and if it has no positive 

(negative) limit points on the boundary of G*. 

Note that A(x) and D(x) will represent the negative and positive limit 

sets of 1r ( t, x) . 

Definition 21 A set H ~ Rn is said to be positively (negatively) invariant 

if x E H n G* implies 1r(t,x) E H for all t E [O,w(x)) (t E [o:(x), 0]). H is 

weakly invariant if it is positively and negatively invariant. H is invariant if 

I(x) = (-00,00) for each x E HnG*. 

Preliminary results 

We now prove two results necessary for the proof of the Principle. These are 

analogous to the two preliminary results in the discrete case. 

Theorem 7 Every positive limit set is closed and weakly invariant. 

PROOF: 
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Consider an arbitrary y such that p(y, S1(x)) = O. By defini­

tion, inf{llz-yll: z E S1(x)} = O. NowVz E S1(x) 35(z) ~ (a,w) 

such that inf{lls-zll: s E 5(z)} = O. Thus inf{lls-YII: 3z such 

that s E 5(z)} = O. Thus one can select from (a,w) a sequence 

tn such that 7r(tn, xo) ----t y. Moreover one can do so such that 

tn ----t w(x). Thus S1(x) = S1(x). (For S1(x) ~ S1(x) trivially, and 

the converse relation has been demonstrated by the above.) Thus 

S1(x) is closed. 

What remains is to show that S1(x) is weakly invariant. Con­

sider an arbitrary y E S1(x) n G* and an arbitrary t E I(x). Now 

I(x) is maximal, and ex hypothesi S1(x) n G* is nonempty, so 

that w(x) = 00. Thus there is a sequence tn such that tn ----t 00 

and 7r(tn, x) ----t y. By our condition of lower semicontinuity, 

we have that for all n sufficiently large, tEl (7r (tn' x)). And 

7r(t, 7r(tn, x)) = 7r(t + tn, x) ----t 7r(t, y) as n ----t 00. Thus 7r(t, y) E 

S1(x), and S1(x) is positively invariant. Thus every positive limit 

set is closed and positively invariant. I 

Theorem 8 Ij7r(t,x) is positively precompact, then S1(x) is in G*, and is 

nonempty, compact, connected, invariant, and is the smallest closed set that 
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7["(t, x) approaches as t -+ 00. 

PROOF: 

That O(x) is nonempty follows immediately from the premise. 

Since 7["(t, x) can only have limit points in G* or its boundary, it 

follows from precompactness that O(x) is in G*. Since O(x) is 

closed by the previous result, and since the solution and hence 

O(x) is bounded, it follows by Heine-Borel that O(x) is com­

pact. Now since O(x) is nonempty and in G*, it follows that 

O(x) n G* is nonempty, so that I(x) = (-00, (0). Since O(x) is 

weakly invariant by the previous result, it is invariant. Since 

O(x) consists exactly of those points which are the limits of the 

images under 7["(t, x) of subsequences of R, it follows that 7["(t, x) 

approaches O(x). If there were a closed subset E in O(x) which 

7["(t, x) approached, then O(x) would contain points of positive 

distance from E, which subsequences of 7["(t, x) would nonetheless 

approach; this is a contradiction. Thus O(x) is the smallest closed 

set that 7["(t, x) approaches as t -+ 00. 

We shall now show that O(x) is invariantly connected. Sup­

pose that it were not. Then O(x) is the union of two disjoint 
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closed nonempty invariant sets 0 1 and O2 , These subsets will be 

compact: they are closed and, being subsets of a bounded set, 

bounded. There exist disjoint open sets U1 and U2 such that 

0 1 C U1 and O2 C U2 . Now 7r(t, x) is continuous and 0 1 is com­

pact, so that 7r(t, x) is uniformly continuous on 0 1 . Thus there is 

an open set VI such that 0 1 C VI and 7r(t, Vd CUI' Since O(x) 

is the smallest closed set that 7r(t, x) approaches, 7r( t, x) must 

intersect both VI and U2 an infinite number of times. But then 

there exists a covergent subsequence 7r(ti , x) that is not in either 

VI or U2 • Since O(x) <:;;; VI U U2 , we have a contradiction, and 

hence O(x) is invariantly connected. I 

Lyapunov functions 

We now define Lyapunov functions for the continuous case. We take V 

G* ---t R. 

Definition 22 The derivative is of the form V(x) = ~~. 

Definition 23 Let V : G* ---t R, and let G <:;;; G*. V is a Lyapunov function 

of (2.2) on G if V is continuous and'l/x E G V(x) ::; o. 
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The Principle 

We begin by introducing some basic sets. These are all relative to a Lyapunov 

function V of (2.2) on G. 

E := {x E G n G* : i" (x) = O} 

M is the largest invariant set in E. 

J\;1* is the largest weakly invariant set in E. 

Theorem 9 (LaSalle's Invariance Principle (continuous case)) Let V 

be a Lyapunov function of (2.2) on G, and let x(t) = 1r(t, xo)) be a so­

lution of (2.2) that remains in G for all t E [O,w(xo)). Then, for some 

c,O(xo)nG* ~ J\;1*nV-1(c). Ifx(t) isprecompact, thenx(t) -+ MnV-1(c). 

PROOF: 

Suppose y E O(x) n G*. Then that set is nonempty, and 

hence w(x) = 00. Then there is a sequence ti E I(x) such that 

ti -+ 00 and x(ti ) -+ 00 as i -+ 00. So by continuity of V we have 

V(x(ti)) -+ V(y) as ti -+ 00, X(ti) -+ 00, and i -+ 00. But V is 

nonincreasing along x(t), and thus V(x(t)) -+ V(y) =: c. 

We further conclude from this that Vy E O(x)V(y) = 0, and 

hence O(x) ~ E. Moreover O(x) is weakly invariant, and hence 
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invariant. Thus, O(xo) ~ AI n V-I(c). Since x(t) ---+ O(xo) as 

t ---+ 00, x(t) ---+ M n V-I (c) as t ---+ 00. I 

We have as a corollary 

Corollary 10 Let V be a Lyapunov function of (2.2) on G and let x(t) be 

a precompact solution of (2.2) that remains in G for all t ~ O. If the points 

of intersection of M (or E) with V-I(c) are isolated for each c, then x(t) 

approaches an equilibrium point of (2.2) as t ---+ 00. 

We now consider the notion of stability. 

Definition 24 A compact set H ~ G* is said to be stable, if given a neigh­

borhood U of H, there is a neighborhood ~v of H such that x E W implies 

7r(t, x) E U for all t ~ O. 

Definition 25 A compact set H ~ G* is an attractor if there is a neigh­

borhod U of H such that x E U implies 7r(t, x) ---+ H as t ---+ 00. If H is both 

stable and an attractor, H is said to be asymptotically stable. 

Definition 26 The region of attraction R(H) of a set H in G* is the set of 

all x E G* such that 7r(t, x) ---+ H as t ---+ 00. 

Thus we have the following result, which we present without proof. 
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Theorem 11 Let G be a positively invariant open set in G* with the property 

that each solution starting in G is bounded and has no positive limit points 

on the boundary of G. If V is a Lyapunov function of (2.2) on G, AID := 

M n G S;;; G, and M o is compact, then M o is an attractor and G S;;; R(Mo). If 

in addition, V is constant on the boundary of M o, then Mo is asympototically 

stable. 
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Chapter 3 

THE CALCULUS ON
 

MEASURE CHAINS
 

3.1 The Axioms 

The material in this chapter is based on [6], except where otherwise noted. 

The axiomatic development of measure chains runs as follows. 

Axiom 1 There exists an ordering relation ::; on the time scale T which 

satisfies the following conditions: 

i) reflexivity (it E T, t ::; t) 

ii) transitivity (ir, s, t E T, r ::; sand s ::; t ===} r ::; t) 
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iii) antisymmetricity (IIr, sET, r ::; sand s ::; r ====} r = s.)
 

iv) totality (IIr, sET, r ::; s or s ::; r).
 

In general, this will be the standard "less than or equal to" relation, 

regardless of the time scale under consideration. 

Axiom 2 T is conditionally complete: each subset oj T bounded above has 

a least upper bound. 

Axiom 3 There exists a junction 11 : TxT -----+ R such that \:Ir, s, t E T we 

have 

i) l1(r, s) + I1(S, t) = l1(r, t) 

ii) r > s ====} l1(r,s) > 0 

iii) 11 is continuous. 

The natural example here is the directed distance function l1(r, s) = r - s. 

This gives the standard discrete calculus on hZ := {hz : z E Z} for any real 

number h. The measure gives the standard continuous calculus on R. 

3.2 Jump operators 

A useful concept will be that of the jump operator. Thus: 
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Definition 27 The forward jump operator on T is the function a : T ---+ T 

such that 

a(t) = inf {s E T : s > t}. 

Definition 28 The backward jump operator on T is the function p : T ---+ T 

such that 

p(t) = sup{sET: s < t}. 

Intuitively, the one takes us to the "next" element in the set (if such 

exists) and the other takes us to the "previous" element in the set (if such 

exists). If no "next" element exists, then a(t) = t; similarly for p. Thus for 

hZ, a(hz) = h(z + 1) and p(hz) = h(z - 1). For R, a(t) = p(t) = t. 

Definition 29 We say that an element is right-dense if a(t) = t; we say it 

is right-scattered if a(t) > t. We say that an element is left-dense if p(t) = t; 

we say that an element is left-scattered if p(t) < t. 

Thus each element of hZ is right- and left-scattered; each element of R 

is right- and left-dense. 
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3.3 Some Known Results 

(Note: All results in this section will be presented without proof.) From the 

first two axioms we can derive the Heine-Borel theorem on measure chains: 

Theorem 12 A set in a measure chain T zs compact if and only if it is 

closed and bounded. 

Here it should be understood that all topological statements are made 

w.r.t. the standard order topology. This is the topology usually assumed for 

R;	 in hZ this is the discrete topology. 

We can also demonstrate an intermediate value theorem: 

Theorem 13 (Intermediate Value Theorem) Given the continuous map­

ping f : [r, s] ~ R, with r, sET, which fulfills the condition f(r) < 0 < 

f(s),37 E [r, s] such that 

There is also an induction principle: 

Theorem 14 (Principle of Induction) Assume that for a family of state­

ments A(t), t E [7, 00) ~ T, the following conditions are fulfilled: 
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i) A(T) 

ii) for each right-scattered t E T we have A(t) ===? A(<7(t)) 

iii) for each right dense t E T there is a neighborhood U such that A (t) 

===? A(s) for each s E U with s > t 

iv) for each left dense t E T we have (A(s) 'lis such that s < t) ===? A(t) 

Then A(t) is true 'lit E [T,OO). 

Note that for T = N, (3) and (4) are trivially satisfied, and (2) becomes 

"For each t E T we have A(t) ===? A(<7(t))". Thus the above principle 

becomes the standard (weak) induction principle on natural numbers. 

3.4 Differentiation 

We now introduce the concept of a derivative. 

Definition 30 Consider a function f : T ---t X, where X is some Banach 

space. At a point t E T we say that f has the derivative fl:1(t) E X if 'liE > O:J 

a neighborhood U of t such that 'lis E U 

If(<7(t)) - f(s) - fl:1(t)· p,(<7(t), s)1 ~ EIp,(<7(t), s)l· 

f is called differentiable in t if f has exactly one derivative in t. 
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We define T" := {t E T : t is nonmaximal or t is left-dense}. Thus T" is 

identical with T unless T has an isolated upper endpoint t*, in which case 

T" = T - {t*}. 

Definition 31 We say that f is pre-differentiable on T with region of differ­

entiation D if D ~ T", T" - D is countable and contains no right-scattered 

elements of T, f is continuous on T and differentiable in each t in D. 

This may seem strange and arbitrary; the definition was created in order 

to prove a theorem which gives existence of anti-derivatives. 

Example: 

From [3]: consider the case of T := {am: m E Z} U {O}. Here 

a(t) = inf{an : n E [m + 1, oo)} = am +1 = a(am ) = at where 

t =j:. O. Moreover, a(O) = O. Thus Vt E T we have a(t) = at 

and p(t) = t/a. Define M(S, t) to be s - t. Thus 0 is a right­

dense minimum and every other point in T is both left- and right­

scattered. For a function f : T -----+ R we must find for each E > 0 

a neighborhood U of t such that Vs E U 

f(a(t)) - f(s) - fb.(t)(a(t) - s)1 ::; Ela(t) - sI. 
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For t # 0, let U = {t}. Then we have 

Ij(a(t)) - j(t) - jt:.(t) (a(t) - t)1 :S Ela(t) - tl· 

Now since this must hold for all E, we have 

Ij(a(t)) - j(t) - jt:.(t) (a(t) - t)1 :S 0, 

and hence 

Ij(a(t)) - j(t) - jt:.(t) (a(t) - t)1 = 0. 

Thus 

j(a(t)) - j(t) - jt:.(t) (a(t) - t) = 0, 

and hence 

jt:.(t) = j(a(t)) - j(t) 
a(t) - t 

j(at) - j(t) 
- (a - l)t ' 

where t = am. Moreover, 

Example: 
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From [3]: let H n be the harmonic numbers, so that Ho = 0 

and H n = 2:~=1 t '<in E N. Then consider the time scale T := 

{Hn : n E No}. Define /1(s, t) to be s - t. Then all points are 

both left- and right-scattered. We have a(Hn ) = Hn +1'<in E No, 

and p(Hn ) = Hn - 1 '<in E N, and p(Ho) = O. For a function 

f : T ---+ R we must find for each E > 0 a neighborhood U of H n 

such that '<is E U 

Let U = {Hn }. Then we have 

Now since this must hold for all E, we have 

and hence 

Thus 
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Consider then the initial value problem
 

xb. = ax, x(O) = 1,
 

where a E R. The solution is given by
 

as can be seen by 

=(n+1)((n:~:a) _(n:a)) 

(n+a)= (n + 1) n+1 
_( )(n+a) ...a
 
- n + 1 ( )'n+ 1 . 

(n + a) ...a 
n! 

Something needs to be said here about the chain rule. This case poses 

certain difficulties (see [1]). For suppose we have a function f : T ---t T' and 
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a function 9 : T' -----7 R. What we should like to say, patterning our formula 

after the chain rule for the continuous case, is 

But in fact a problem arises here. For 

If 0 g(a(t)) - f 0 g(8) - (f 0 g)Ll(a(t) - 8)1 :s:: Ela(t) - 81 

for 8 in some appropriately chosen U1 . But 

If(a(g(t))) - f(g(8)) - fLl(a(g(t)) - g(8))1 :s:: Ela(g(t)) - g(8)\ 

and 

Ig(a(t)) - g(8) - gLl(a(t) - 8)1 :s:: Ela(t) - sI-

But it may be the case that g(a(t)) #- a(g(t)). Thus the chain rule cannot be 

justified in this form. It is for this reason that we introduce the generalized 

jump operator (explained in [1]). A generalized jump operator is a function 

a mapping T into itself. The a-derivative is defined as the derivative is, 

substituting 'a' for '6'. 

Theorem 15 Let T and X be time scales with generalized jump operators 

a and (3 respectively. Let 9 : T -----7 X and w : x -----7 R. Suppose that t is a 

39 



•
 

point which is not an isolated extremum and is such that g(a(t)) = f3(g(t)). 

If gQ(t) and w f3 (g(t)) exist, then 

at t. 

This theorem and its proof can be found in [1]. 

There is also a mean value theorem for measure chains. 

Theorem 16 (Mean Value Theorem) Let the mappings f : T ~ X, 9 : 

T ~ R, be predifferentiable with D, and assume that Ifb.(t)1 ::; gb.(t), tED. 

Then for r, SET, r ::; s, 

If(s) - f(r)1 ::; g(s) - g(r). 

3.5 Rd-continuity and Integration 

We now introduce the notion of rd-continuity. 

Definition 32 A function 9 is called rd-continuous if it is continuous in 

each right-dense or maximal t in T and the left sided limit exists in each 

left-dense t. 
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Another important notion is that of a regulated function. 

Definition 33 A function g is called regulated if in each left-dense t in T 

the left sided, and in each right-dense t in T the right sided limit exists. 

These notions will be useful in the development of the integral. 

The following result is due to Hilger; we present it without proof. 

Theorem 17 Let 7 E T, x EX, and a regulated mapping g : T K ----+ X 

be given. Then there exists exactly one function f, the pre-antiderivative, 

which is predifferentiable and fulfills the identities f6.(t) = g(t) for tED 

and f(7) = X. 

The development of the integral has not proceeded along the lines of 

measure theory (i.e. the Riemann integral). The definition is rather as 

follows: 

Definition 34 For a regulated funtion g : T K ----+ X let f : T ----+ X be the 

pre-anti-derivative. Then 

jT g(t) /}.t := f(s) - f(r) EX. 

Definition 35 Let g : T K ----+ X. The mapping f : T ----+ X is called 

antiderivative of g on T if it is differentiable on T and satisfies f6. (t) = 

g(t) "It E TK. 
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We have the following result, from Hilger; we present it without proof. 

Theorem 18 If g : T K -----+ X is rd-continuous, then g has the antiderivative 

f, where f(t) = I: g(s) 6.8. 
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Chapter 4 

LASALLE'S INVARIANCE 

PRINCIPLE ON MEASURE 

CHAINS 

4.1 Introduction and Basic Notions 

Our method of proceeding will essentially be that outlined by LaSalle. Most 

definitions will appear as natural extensions of his own definitions. The 

main difficulty will arise in the notion of a derivative, specifically that of the 

Lyapunov function V. The definition of a Lyapunov function puts certain 
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conditions on the derivative along a solution. This requires the chain rule, 

with the attendant complications introduced earlier. 

We begin by considering a time scale T which contains o. We consider a 

function x : T ---+ R and a function f : G* ---+ R, where G* is the largest 

open set in T ' , the time scale which is the image of T under x. The sort of 

"delta equation" we shall look at, then, will have the form 

xt:. = f(x), x(O) = Xo. (4.1) 

We assume f to be continuous, and that the solution 1f(xo, t) is unique. 

Definition 36 Consider a function ¢ : (0:, w) n T ---+ G*, where 0: E T, w E 

T, and -00 :::; 0: < 0 < w :::; 00. A point pET is a positive (negative) limit 

point of ¢ if wET (0: E T) and there is a sequence tn E (0:, w) n T such 

that tn ---+ w (tn ---+ 0:) and ¢(tn) ---+ pas n ---+ 00. The set D(¢) (A(¢)) of all 

positive (negative) limit points of ¢ is called the positive (negative) limit set 

of ¢. 

Definition 37 The interval (0:, w) nT is maximal if w < 00 (or less than the 

maximal point ofT, if such exists) implies D(¢) n G* = {} and 0: > -00 (or 

greater than the minimal point of T, if such exists) implies A(¢) n G* = {}. 
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Definition 38 A local dynamical system on a time scale T is a mapping 

7f : T x Rm ---+ Rm such that for some maximal interval of definition 1(x) = 

(a(x), w(x)) n T 

i) 7f(0, x) = 0 holds for some maximal interval of definition 1(x) = (a(x), 

w(x)), - 00 :::; a < °< w :::; 00 for each x E G*. 

ii) 'lis E 1(x) 'lit E 1(7f(s, x)), we have that s + t E T implies s + t E 1(x) 

and that 7f(t, 7f(s, x)) = 7f(s + t, x). 

iii) 7f is continuous, i.e. if (tn, xn) E G* x 1(xn) and (tn, x n) ----+ (t, x) E 

G* X 1(x), then 7f(tn,xn) ----+ 7f(t, x). 

iv) I (x) is lower semicontinuous on G*, i. e., if Xn ----+ x E G*, then I (x) ~ 

lim inf 1(xn) = U~=l n~=k1(xn)' 

Definition 39 A dynamical system on a time scale T is a local dynamical 

system on T with 1(x) = T Vx E G*. 

Solutions to (4.1) correspond to particular dynamical systems on T and 

vice versa. 

Definition 40 A solution 7f(t, x) is positively (negatively) precompact if it 

is bounded for all t E [O,w(x)) n T (t E (a(x),O] n T) and has no positive 

(negative) limit points on the boundary of G*. 
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Since w(x) is maximal, if 7r(t, x) is positively precompact then w(x) = 

00. We use Q(x) and A(x) to denote the positive and negative limit sets 

respectively of 7r(x, t). 

Definition 41 For (4.1), a set J ~ Rn is said to be positively (negatively) 

invariant if x E HnG* implies7r(t,x) E J forallt E [O,w(x))nT ((a(x),O]n 

T). H is said to be weakly invariant if it is positively and negatively invariant. 

If, in addition, I(x) = T for all x E H n G*, H is said to be invariant. 

If His precompact relative to G* and weakly invariant, then it is invariant. 

4.2 Prelinlinary Theorems 

We now introduce the usual theorems, with proof. 

Theorem 19 Every positive limit set is closed and weakly invariant. 

PROOF: 

Closedness follows as before. For weak invariance, consider 

the fact that the set of limit sets we encounter for measure chains 

will be the same as that encountered in the continuous case. If 

solutions starting in limit sets stay there in the continuous case, 
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they plainly cannot do otherwise for measure chains, which are 

after all subsets of R. I 

Theorem 20 Ij7r(t,x) is positively precompact, then O(x) is in G*, and is 

nonempty, compact, connected, invariant, and is the smallest closed set that 

7r(t, x) approaches as t -+ 00. 

The proof is the same as in the continuous case. 

4.3 Lyapunov functions 

Let V : T' -----+ R. Take 0: to be the generalized jump operator on T and (3 

to be that of T'. 

Definition 42 The derivative here has the jorm V (x) = V 13 (x) 

Letting x(t) = 7r(t, x), we see that the derivative of V w.r.t. t E T along 

the solution becomes 

Definition 43 Let V : T' -----+ R, and let G be any subset oj G*. V is said to 

be a Lyapunov junction oj (4.1) on G ijV is continuous, and V(x) ~ 0 Vx E 

G. 
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4.4	 LaSalle's Invariance Principle on Measure 

Chains 

We proceed essentially as in the continuous case. Relative to a Lyapunov 

function V of (4.1) on some G ~ G* we say that E = {x E GnG* : V(x) = O}. 

We say that M is the largest invariant set in E and that M* is the largest 

weakly invariant set in E. 

Theorem 21 (LaSalle's Invariance Principle on Measure Chains) Let 

V be a Lyapunov function of(4.1) on some G ~ G*, and let x(t) = 7r(t, xo) be 

a solution of(4.1) that remains in G for alit E [O,w(xo))nT. Then, for some 

c, [2(xo)nG* ~ M*nV- 1 (c). Ifx(t) isprecompact, thenx(t) -+ MnV- 1 (c). 

PROOF: 

Assume that y E [2 (xo) nG*. Then w(xo) is 00 or the maximal 

point of T, if such exists. Let t** stand for this maximal point or 

for infinity, which ever is appropriate. Thus there is a sequence 

tn such that x(tn) -+ y and tn -+ t** as n -+ 00. By continuity 

of V we have V(x(tn)) -+ V(y) as n -+ 00. In fact V(x(t)) is 

nonincreasing w.r.t. t, so that we have V(x(t)) -+ V(y) =: c. 

48 



• 

Since V(x(t)) can converge to at most one point, we have V(y) = 

c for all y E O(xo) n G*. Now y E G* n G, and 

lV(fJ(y)) - V(s)1 :::; ElfJ(y) - sl 

for s in some neighborhood U (E). For regardless of what con­

vergent sequence we select from U we arrive at another limit 

point, whose value under V is that of V(y), namely c. Thus 

O(xo) n G* is in E. Moreover it is weakly invariant. Thus 

O(xo) n G* ~ M* n V-1(c). If x(t) is precompact, O(xo) n G* 

is invariant. Thus O(xo) ~ M; thus O(xo) n G* ~ M; thus 

O(xo) n G* ~ M n V-1(c). Hence x(t) ---+ M n V-1(c). I 
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Chapter 5 

CONCLUSION 

Thus we can see how LaSalle's results may be generalized in such a way 

that the continuous and discrete cases are considered together, along with 

other important cases. This is done through the calculus on measure chains. 

LaSalle's Invariance Principle, an extension of Lyapunov's method, has been 

justified in this wider context. 

The next step would be to develop results on stability as LaSalle has 

done. Ideally, work should be done concerning vector Lyapunov functions. 

These are discussed in [11]. Also, investigations should be carried out into 

the case of nonautonomous systems. These are systems of the form 

x = f(x, t). 
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A discussion of this more difficult case can be found in Zvi Artstein's ap­

pendix to [11]. 
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