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Abstract 

Title: Mapping Robotic Movement to a Three-Dimensional Coordinate System 

The Illinois Wesleyan Intelligence Network on Knowledge (I.W.I.N.K.) is a project 

to design and implement an artificial"person'" named Shelley. Robotics, networking, and 

artificial intelligence will be the main topics of the preliminary work. For my research 

honors project I designed the three-dimensional coordinate system in which the robotic 

arms move and interact with objects. The anns we have constructed are based on an 

arrangement of six servos, each of which rotate approximately 185 degrees. The program 

takes in data about the location of an object in three-dimensional coordinates and moves 

each of the six motors in the ann to arrive at that point. The mathematics involved is based 

on intersecting circles using the following equation: 

(x-h/ + (v-k/ = r 
(Assuming the center of the circle is (h,k) and the radius is r) 

Included in this work is a look at robotic arm developments through history, from Leonardo 

da Vinci through the Industrial Revolution, and beyond. Also discussed are the various 

joint and arm designs developed during these years of research and some robotics projects 

which employ these different designs. Next, we will investigate the various methods of 

control developed by other robotic arm research projects and apply one particular method to 

control Shelley, as briefly outlined above. Finally, we will highlight problems we faced 
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Historical Background 

In 1818, Mary Shelley penned the novel. Frankenstein, and the concept of recreating 

humans through technology was popularized. In fact Mary Shelley subtitled the book The 

Modern Prometheus after the Titan in Greek mythology who fashioned the first human 

beings out of clay. [2] Currently, Mary Shelley's name is once again associated with the 

recreation of humans through technological means. Shelley is the name of the robot Illinois 

Wesleyan University students and faculty are undertaking to create. 

For centuries, humans have been interested in recreating themselves through 

technology. Some of the earliest signs can be seen in cave paintings and the sculptures of 

ancient Greece and Rome. Robotics can be seen as a logical extension of sculpting and 

other art forms. The artisans used whatever technology was available to them. Depending 

on the definition one considers, something as ordinary as a washing machine could be 

considered a robot. Webster's dictionary defines robot as "an automatic device that ' 

performs functions ordinarily ascribed to human beings."[3] However, most studies in the 

history of robotics focus on projects that fit the more precise definition used by the Robot 

Institute ofAmerica: "A robot is a reprogrammable multi-functional manipulator designed 

to move materials, parts, tools, or specialized devices, through variable programmed 

motions for the performance ofa variety oftasks."[3] The first real signs of development 

in robotics can be seen in the work of Leonardo da Vinci. Although he is notorious for his 

incomplete works[5], he made detailed studies into the anatomy of human arms and applied 
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this knowledge to several projects. Since his main area of interest was flight, most of his 

sketches and models used this research to produce articulated wing structures designed to 

allow man to fly. These devices do not exactly fit the second strict robot definition given 

above, but they are commonly considered the first true beginnings of modem robotics. The 

technology expanded in small steps for many years until the Industrial Revolution. 

The Industrial Revolution 

The Industrial Revolution provided both the need for and the technology to produce 

robotics. These robots were classified as industrial robots which are defined as "a general 

purpose, computer-eontrolled manipulator consisting of several rigid links connected by 

revolute or prismatic joints. One end of the chain is attached to a supporting base, while 

the other end is free and equipped with a tool to manipulate objects or perfonn assembly 

tasks."[3] This definition is somewhat restrictive because it implies that true industrial 

robots must have some level of intelligence. To slightly broaden this definition, humari­

controlled robots are often included. Industrial robots are nonnally used to perfonn 

relatively simple, repetitive tasks which have been programmed in by a human user. Early 

work can be traced to the period immediately following World War n.[3] During the late 

1940s, research programs were started at the Oak Ridge and Argonne National 

Laboratories to develop remotely controlled mechanical manipulators for handling 

radioactive materials. These systems were master-slave configurations. In other words, 

they were designed to reproduce hand and arm motions made by a human operator in a 
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remote location. The master manipulator was guided by the user through a sequence of 

movements, while the slave manipulator duplicated the master as closely as possible. New, 

more sophisticated robotics were developed by men like Joseph Engelberger and George 

Devol known as the "Father" and "Grandfather of industrial robotics" respectively. [2] 

Devol is credited with receiving the first industrial robot patent in 1950 and for designing a 

playback system for teaching machine tools to remember their motions. [2] When applied 

to robots, this technology allowed users to simply program robot motion instead of directly 

controlling it. Engelberger is known for combining Devol's ideas from above with his own 

business savvy to lead Unimation Inc., the first industrial robotics company, to the top of its 

field. [2] 

Robotic Tasks 

During the Industrial Revolution, robots were developed to perform many tasks 

including welding, material handling, machine loading and unloading, spray finishing; 

machining, assembly, inspection, and remote manipulation. [2] 

Welding 

Welding comes in two forms, spot and arc, and is the largest industrial robotic 

application. Accuracy, heat resistance, and speed are the keys to the success of welding 

robots. Current models like the German-made KUKA and others are used for welding in 

automobile plants around the world. They provide higher quality cars produced faster than 

any human assembly line could. Specialized units like the KUKA 200[2] are designed to 
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spot-weld extremely curved surfaces. and this ability lends to an ever increasing degree of 

flexibility in tasks. 

Material Handling 

Material handling is the second largest industrial robot application. A common 

material-handling job is the grouping and/or removing of parts as they come down a 

conveyor. 

Machine Loading and Unloading 

Similar to the material handling application is machine loading and unloading in 

which robots pick up and transfer parts to and from machines. These robots are mainly 

used in foundries to remove parts from casts. 

Spray Finishing 

Spray finishing includes the application of paints and other decorative and 

protective coatings. The benefits of using robotics for this task are even coverage, speed, 

and lower costs due to reduced fresh air requirements. 

Machining 

Machining includes cutting, grinding, polishing, drilling, sanding, buffing, 

deflashing, and deburring. This application requires extremely accurate, often complex 

robotics, but the benefits are increased speed, uniformity, and output accuracy. 

Assembly 

The assembly application includes means of combining parts other than welding 
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including fitting together parts, and holding them together with nuts, bolts, screws, and 

bonding. Eighty-five percent of all manual labor expended in U.S. industry can be 

classified as assembly. [2] Many of these tedious and repetitive positions can and are being 

"manned" by robots. For this project, we will not go into the various ethical questions that 

arise over replacing humans with robots. 

The first industrial robot developed especially for assembly was the PUMA 

(programmable universal machine for assembly) by Unimation, Inc.[2] Various models in 

the PUMA line are still used for tasks ranging from small-appliance assembly, electrical 

component insertion, and wire harness wrapping. One of the most popular robotic 

assembly tasks is the manufacture of printed circuit boards for computers and many other 

electrical components. A robot can produce such detailed products far more rapidly and 

efficiently than a human could. 

Inspection 

Inspection robots use either tactile or visual data to detennine the quality ofa 

product. They are often associated with assembly robotics to ensure that the work is being 

done to the specified tolerances. 

Remote Manipulation 

Finally, remote manipulators are another popular application of industrial robots. 

Often, they utilize the master/slave convention as previously described. Examples can be 

seen in underwater exploration and the space program. The benefits of such robots are 
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extraordinary. If manufactured correctly, they can withstand extreme and dangerous 

conditions. and allow humans to "go" places we would not normally have access to like 

distant planets and the depths of the ocean. Although Shelley is an educational robot, and 

not an industrial robot. it is important to look at industrial robot development. Without the 

Industrial Revolution and the advances in industrial robotics, we would not be able to 

assemble a multi-functional, dextrous manipulator like Shelley. 

Joint and Arm Designs 

From all of the robotics research over the years, many joint and arm designs have 

been developed. Each joint design was created to fulfill a specific task. Figure A contains 

images of the various joints. They can be split into two basic categories. The sliding group 

includes the cylindrical, prismatic, and planar joints which all involve one surface sliding 

on or through another. The other joints allow only for rotation. The screw joint is a hybrid 

ofthe two categories. It allows controlled sliding. In other words, the central portion' 

slides through the outer ring, but the sliding is controlled by the rotation of the central 

cylinder. In comparison, the prismatic inner cylinder simply slides without rotation, and 

the inner cylinder of the cylindrical joint slides with or without rotation. Various 

combinations of these joints can be used to produce different types of arms. Four different 

variations can be found in Figure B. These four motion-defined categories are: cartesian 

coordinate, cylindrical coordinate, spherical coordinate, and revolute or articulated 

coordinate. The defining factor for the categories is the number and type of axes. 
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Cartesian arms have three linear axes. IBM's RS-l model is an example of this design. 

The Versatran 600 robot from Prab is a cylindrical coordinate arm and has one rotary and 

two linear axes. Spherical coordinate arms have one linear and two rotary axes while 

revolute coordinate arms have three rotational axes. The 2000B and the PUMA from 

Unimation Inc.[3] are examples of these two models respectively. Shelley is composed of 

revolute joints. From Figure A, one can see that the basic design of the revolute joint 

allows only rotation in two directions, say clockwise and counter-clockwise, around a fixed 

point. This rotation value, in degrees, radians, or servo steps, is the data we need to keep 

track of when calculating Shelley's arm movements. Although Shelley's arm design is not 

identical to the one pictured in Figure B, it is a type of revolute or articulated arm. A 

sample of Shelley's arm design can be found in Figure C. 

Robot Arm Kinematics 

Now that we have looked at some historic developments and types of arms, we can 

investigate different possible solutions to the arm control problem we attempted to solve 

for Shelley's arms. Controlling the final position ofa robotic arm, not the path of motion, 

is a specialized kinematic problem. Robot arm kinematics deals with the analytical study of 

the geometry of a robot arm with respect to a fixed coordinate system without regard to the 

forces that cause the motion. It deals with the relation between the joint rotations and the 

position and orientation ofthe end-effector.[3] Applied to Shelley's layout in Figure C, 

kinematics studies the rotation of servos I through 6 and the resulting position of the claw. 
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There were two ways to look at this problem. First, if we looked at each servo and link 

individually, starting with I and working towards 6, we could tell where the claw would 

finish. On the other hand, we could work backwards by assigning a location for the claw 

and then determining the rotational settings required of the servos, working from 6 to I, to 

deliver the claw to that point. These two approaches are the basis of the two problems in 

the study of kinematics. These two fundamental problems are designed to answer the 

following questions of specific interest in robot arm kinematics[3]: 

I. For a given manipulator. given the joint angle vector and the geometric link 

parameters, where n is the number of degrees of freedom, what is the position and 

orientation of the end-effector of the manipulator with respect to a reference 

coordinate system? 

2. Given a desired position and orientation of the end-effector ofthe manipulator 

and the geometric link parameters with respect to a reference coordinate system, can 

the manipulator reach the desired position and orientation? And if it can, how many 

different manipulator configurations will satisfy the same condition? 

The first question outlines the direct kinematics problem while the second refers to the 

inverse kinematics problem. The block diagram in Figure D indicates the relationship 

between these two problems. 

The Direct Kinematics Problem 

The direct method looks at the properties of each joint and link starting at the base 
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to determine the position of the end-effector. Each joint-link pair constitutes one degree of 

freedom. In Shelley's case, she had essentially six joint-link pairs, resulting in six degrees 

of freedom. Since the links may rotate and/or translate with respect to a reference 

coordinate system, the total spatial displacement of the end-effector is due to the angular 

rotations and linear translations of the joint-link pairs. One of the most popular methods to 

solve the direct kinematics problem is a generalized and systematic approach utilizing 

matrix algebra to describe and represent the spatial geometry of the joint-link pairs of the 

robot arm with respect to a fixed reference coordinate system. This solution is referred to 

as the Denavit and Hartenberg method[3]. Essentially, this method uses a homogeneous 

transformation matrix to describe the spatial relationship between any two adjacent links. 

When chain-multiplied together, this set of matrices produces one matrix that represents the 

spatial geometry of the entire arm in terms of an attached coordinate system. In other 

words, location of the end effector is given in terms of the special arm coordinate syst~m, 

not the cartesian world coordinate system, or a further homogeneous transformation matrix 

must be found to relate the two coordinate systems. 

The Inverse Kinematics Problem 

The inverse kinematics problem works essentially opposite to the direct problem. 

The claw is positioned as needed, and then we work backwards through the joints, or 

servos, to determine the required rotational settings of each one. All calculations are done 

based on the world cartesian coordinate system instead ofan arm-attached reference frame. 
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Once again, matrix algebra may be used to solve the inverse problem in much the same way 

as it is used to solve the direct problem. The only differences would be that the matrices 

are chain-multiplied in reverse order, and, since the matrices for each joint-link pair in the 

inverse solution are given in terms of the world coordinate system and not an attached 

coordinate system, there is no need to calculate an extra homogeneous transformation 

matrix to convert between the two coordinate systems. 

A more straight-forward approach, known as the geometric approach, to the inverse 

kinematics problem is also available. In this method, the reach, or work envelope, ofeach 

joint-link pair is studied and represented with a geometric shape. The intersection points of 

these geometric work envelopes are calculated starting at the end-effector and working 

back towards the base. One intersection point between each joint-link pair's work envelope 

and that of the next joint-l ink pair in the chain is chosen to represent a joint in the robotic 

arm. Ifall of the work envelopes intersect without requiring more rotation from any servo 

than it can provide, a solution is found. From the many intersection points, we can 

calculate the rotational settings ofthe various servos. In Shelley's case, since the joints are 

all revolute (Figure A), the geometric shapes representing the joint-link pair work 

envelopes are all simple circles centered at a servo, or the end-effector coordinates. (Refer 

to Figure E for an example of two joint-link combinations from Shelley's arms). 

Choosing The Method 

For our project, we were looking for the most straight-forward, least complicated 
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solution to controlling Shelley's arms. We first decided that since we wanted to input the 

end-effector coordinates in terms of a world coordinate system and have the program 

output the required rotational settings of the servos, the inverse kinematics problem was the 

best approach because the direct kinematic approach solves a completely different problem 

where the servo settings are known and the end-effector position is the calculated value. As 

previously noted, the work envelopes of the joint-link pairs in Shelley's arms could be 

represented by simple circles. For this reason, the geometric approach made more sense 

than using the far more complicated matrix algebra approach. As is the goal with most 

projects of this type, we wanted to keep things as simple as possible to provide a simple 

platform on which to build with future research. 

Breakdown of Shelley's Ann Movement 

Shelley's arms, manufactured by Robix/Advanced Design, Inc. 

(http://www.robix.com). contain six revolute servos, each of which rotates approximately 

180 degrees. (Refer to Figure C for a picture of one of Shelley's arms). The rotation 

properties of the servos and the lengths of the links connecting them determine the overall 

work volume of the arm. The problem we were attempting to solve was: if we specify a 

location in three-dimensional space, how do we determine the rotational settings for each 

servo such that the end-effector reaches that location? To complicate this, there was the 

added fact that Shelley's vision capabilities were, and are, non-existent. This meant that the 

technique used to calculate the arm movements needed to be very precise because she could 
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not make the fine adjustments a typical human being would make when reaching for an 

object.[7] We reached a point where we knew which technique we wanted to employ, the 

geometric solution to the inverse kinematics problem. It was time to break down Shelley's 

arm movement and apply the technique. 

The first thing that we decided when studying Shelley's general arm design was that 

two servos (1 and 2) controlled the horizontal movement and two (3 and 4) controlled the 

vertical movement. Servos 5 and 6 controlled the rotation and grasp of the claw, 

respectively. The layouts of the two servos in each dimension were similar. This meant 

that we could break up the three-dimensional movement into vertical and horizontal 

portions to make the task easier. Figure E shows a top view of the horizontal portion of the 

control scheme that was the focus of this project. 

The next step was to break down this horizontal movement into the rotation of two 

joints connected to two links. Figures 0 shows the two-dimensional system, pulled from 

Figure C, that we were working with. The following description focuses on servos I and 2 

and segments T] and T2 from Figure C. We started ofT with five known values and one 

value provided by the user. The known values were the location of the base (0,0), the 

length of both segments or links (T] and T2), and the rotation limitations ofeach of the two 

joints (servos 1 and 2). We decided that the rotation of the servos would be measured in 

positive and negative rotation compared to a centered zero value because the Robix kits and 

driver software were designed to specifY the rotation in this manner. The coordinates of 
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the end-effector (h,k) would be input by the user. For this two-dimensional representation, 

which provides only the horizontal movement of the arm, the end of link r 2 furthest from 

the base was deemed the end-effector. This particular point was used because, in a full 

three-dimensional implementation of this project, the far end of rcwould intersect with the 

vertical system defined by servos 3 and 4. 

Mathematical Model of Shelley's Arm Control 

One end of r j was attached to the base while one end of r2 was always connected to 

the end-effector coordinates. Since we were employing the geometric method, the range of 

available reach for each link was represented by a circle as in Figure E. One circle was 

centered at the base and had a radius equal to the length of rj • Assuming the base was at 

(0,0) in our two-dimensional system, the equation for this circle was: 

{EQ I}
 

The assumption that the base was at (0,0) simplified several calculations, but it also cut 

down on the flexibility of the program to a certain extent because each arm would have 

needed its own coordinate system. Since we were only working with one arm for this 

project, this assumption was fine, but future projects to integrate both arms should allow 

for base of either arm to be at any coordinates. The second circle was centered on the end-

effector coordinates (h,k) and had a radius equal to the length of r 2. The equation of this 

circle was: 

(x - hl + (y - kl = r/ {EQ2} 
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Servo 1 and its associated angle (A /) were located at the base while servo 2 and its 

angle (A2) were located at the intersection point (x.y) between the two circles. (Refer to 

Figure E for details). The next step was to find this intersection point 

We first had to make sure that the circles did intersect. We decided that if the end-

effector coordinates were neither beyond the maximum reach of the two links nor closer 

than some minimum reach, then the two circles would intersect. The maximum reach was 

just the length of both segments, r j and r], added together, but the minimum reach required 

some more calculations. With servo 1 set to any value, the minimum reach was based on 

the maximum rotation of servo 2 as shown in Figure F. The equations involved were as 

follows: 

a = servo 2 max rotation {EQ 3} 

8 = Jr- a {EQ4} 

B = r2 sin 8 {EQ 5} 

C = r2 cos 8 {EQ 6} 

{EQ 7}
 

Distance = (A J + IYi' {EQ 8} 

The resulting code for this calculation was: 

#define MINREACH sqrt(pow(r2*sin(PI-SERV02MAXR),2) + 

pow(rl-(r2*cos(PI-SERV02MAXR) ),2») {CODE I} 

Now that we had these minimum and maximum distance values, we knew that if the end-

effector coordinates were neither too far nor too close to the base, then there would be at 

16 



least one intersection point between the two circles. For this project, we were not 

concerned about which of the two intersection points, if there were two as in Figure E, was 

a better choice based on the current position of the arm because we only wished to use 

whichever intersection led to a viable solution. A viable solution meant one which did not 

require excess rotation from either servo. Ideally, the program would decide which 

intersection point required the least arm movement from the current position, but this was 

beyond the scope of this project. 

The next step was to determine an intersection point (x,y). To accomplish this, we 

simply solved both previous circle equations, {EQ 1} and {EQ 2}, simultaneously for x and 

y. By subtracting {EQ 2} from {EQ 1} and solving for y we obtained: 

y = -(hIk)x + ((r/-r/+li+k) / 2k) {EQ9} 

by multiplying through on the quadratic terms and solving for y. Next, we substituted this 

y value into the first circle equation{EQ I}: 

r + [-hlk + ((r/-r/+li+lC) / 2k)J = r/ {EQ to} 

Then, we set this equal to zero and simplified to determine the A, B, and C coefficients of 

the x terms to solve for x using the quadratic formula: 

A B c 

These coefficients for the various x terms were then plugged into the quadratic equation 

and a solution was found for x. 
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intrsctn.x = (-b - sqrt(pow(b,2) - (4*a*c))) / (2*a); {CODE 2} 

The variables G, b, and c were previously defined as the x coefficients from {EQ 11 }. This 

is where the existence of two intersection points caused a problem. Depending on whether 

we added or subtracted in the quadratic equation solution, we got two different answers in 

many cases. We chose to subtract first, and then to add only if the resulting value would 

require a greater rotation than the servo's capabilities. The reasoning behind this was that 

for the arm with which we were working, Shelley's left, negative rotation of servo I 

translated into counter-clockwise rotation. Counter-clockwise rotation for that arm was 

away from Shelley's head; and it made sense to try to avoid obscuring her "vision" or 

making contact with the head. Once an appropriate value for x was found, we used it to 

solve for yin {EQ 9}. 

intrsctn.y = (pow(rl,2) - pow(r2,2) - (2*intrsctn.x*ee.x) + 

pow(ee.x,2) + pow(ee.y,2)) / (2*ee.x); {CODE 3} 

In the code example, ee.x and ee.y are equivalent to hand k, respectively. This gave us the 

coordinates of our intersection point. 

Once we obtained the coordinates of the intersection point (x,y), the calculation of 

the values for the angles, AJ and A2, were the next step. From the layout in Figure E and 

the knowledge that the sine ofan angle in a right triangle is equal to the opposite side over 

the hypotenuse, we could calculated that: 

Al = sin-J (x / rJ {EQ I2} 

theangle asin(i.x/rl); {CODE 4} 
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This gave us the angle at which servo 1 needed to be set. Servo 2 was a little more 

complicated. We needed to find the distance(L in Figure E) from the end-effector 

coordinates to the "line" created by created by r,. Ifa line is defined by the equation: 

Ax + By = C {EQ 13} 

then the distance from a point (x,y) to the line would be[6]: 

lAx + By - Cl / (A 2 + wi: {EQ 14} 

This is based on drawing a line from the point perpendicular to the known line, and then 

measuring the distance, using the basic distance formula, from the original point to the 

point where the two lines intersect. Using the point-slope line equation, we defined the 

"line" created by r, as: 

y = slope *x {EQ IS} 

The b variable from the basic point-slope equation is zero because we assumed that the 

base was at (0,0). Also as a result of this assumption, the slope was equal to y/x. We ' 

converted {EQ IS} into the form of {EQ 13} and found the following values to substitute 

in {EQ 14}: 

A = -slope {EQ I6} 

B=1 {EQ 17} 

c=/ {EQ I8} 

We plugged these values into the distance equation and obtained a value for the distance L 

... ­
Ie- JI shown in Figure E.r~ 'I 



dist = fabs((-slope*ee.x) + ee.y) I sqrt(pow(slope,2) + 1); {CODE5} 

Next, we solved for the angle(A2) of servo 2 once again using the rules of right triangles 

and the newly found L value: 

{EQ 19}
 

theangle = asin(dist/r2); {CODE 6} 

At this stage, we had both rotational settings, in radians, for the servos in question. 

The last task was to convert from radians into Robix step values. We first manually 

measured the maximum rotation of the servos in both radians and Robix step values. Next, 

we found the percentage of maximum radian rotation we had just calculated for each servo. 

Then, we multiplied this percentage by the maximum Robix step value that corresponded to 

the maximum radian value for each servo. This gave us the rotational settings for servos 1 

and 2 in Robix steps which we then input into the Robix control program to actually move 

the ann. 

Problems and Solutions 

Joint Over-rotation 

Along the way, we encountered some minor problems we had to solve. One conflict 

arose when an intersection point was detennined {EQ 10 and EQ 11 }. We needed to make 

sure that both servos could rotate to the extent that the solution demanded. Comparing the 

solution to the maximum rotation value was the way to keep track of this for servo 2. 

Servo 1 was a different situation. To avoid problems which arose regarding the over­
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rotation of servo 1, we devised a method to check the y coordinate of the intersection point 

to make sure that it was not less than some minimum value that r/ could reach based on the 

rotation of servo 1. The schematic for this can be found in Figure G. The equations to 

calculate this minimum y intersection value were: 

« = max rotation ofservo , {EQ 20} 

8=«-(1r/2) {EQ 21} 

min. intersection = -(r' sin 8) {EQ 22} 

#define MININSCTNY -(rl*sin(SERVOlMAXR-(PI/2))) {CODE 7} 

This technique still worked even if the maximum rotation of servo 1 was less than 1r /2 

because the negative sign in {EQ 22} then resulted in a positive minimum y intersection 

value which was appropriate for the problem because r/ was still in the first quadrant of the 

graph where both x and yare positive. This minimum y intersection value applied 

regardless of positive or negative rotation of servo 1 because we adjusted the servos to 

rotate the same amount on either side of the straight, zero position. If the rotation 

demanded of servo I was not within range, we first tried the alternate intersection point 

(adding when solving the quadratic equation instead of subtracting), and ended the program 

only if the new rotation value was still out of range. If the rotation value calculated for the 

servo 2 was out of range, the program would immediately stop and print an error message 

to the screen. 
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Symmetrical Rotation 

Another problem presented itself because we used the maximum rotation of either 

servo for some calculations {EQ3 and EQ20}. To allow for simpler calculations, we had to 

ensure that each servo could rotate the same number of degrees both directions from the 

zero centered point. To do this, we had to pay close attention to the rotation of the servos 

during installation. 

k Coordinate of End-effector Equal To Zero 

When calculating the intersection point {EQ 10 and EQ 11 }, we decided that we 

needed to check if the k value of the end-effector coordinates (h,k) was zero. The equations 

we used to solve for the intersection used k in the denominator. If k was zero, we simply 

switched the solving order and solved for y first using the quadratic equation so that h 

would be in the denominator instead of k. We then solved for x in terms ofy. (Refer to 

functions Getlntersectionl and Getlntersection2, pages 3 to 5 in the Program 

Appendix, to see the two orders of calculating and the system to check for k = o. We knew 

that hand k could not both be zero because that would produce an error message that the 

end-effector was too close to the base. 

Servo 2 Rotation Calculations 

When working with the angle for servo 2 {EQ 13 - EQ 19} we ran into additional 

problems. The first problem was that it was possible to have an undefined slope for the 

"line" created by extending rJo This happened when the x value of the intersection point 
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was zero. Ifit was equal to zero the distance (L) we wanted to calculate was simply the 

absolute value of the h coordinate of the end-effector. and the x value on the "line" when 

inserting k into the equation {EQ 15} for the line was just the x coordinate ofthe 

intersection. Refer to function GetServo2Anqle (Program Appendix pages 4 and 5) to 

see the execution of this check. This data was used in the solution to the following 

problem. It was difficult to tell if the rotation of servo 2 should be positive or negative. 

This was because the straight, zero position was in line with T/ and not the reference 

coordinate system. An example of this is in Figure E. To solve this problem, we plugged 

the k value of the end-effector into the previously described point-slope equation{ EQ 15} 

for the "line" created by T/ and solved for x. If this calculated value was less than the h 

value of the end-effector, then the rotation was positive. Otherwise, it was negative. This 

routine can also be found in GetServo2Anqle (Program Appendix pages 4 and 5). 

Claw Offset 

The final problem we found was that the claw is offset to the left from the line of T2. 

This problem was caused because the actual rotating part on the servos is not centered. We 

had to decide if the claw was going to be offset to the right or the left during construction 

based on the positioning of servos 5 and 6. The choice between an offset to the left or right 

was completely arbitrary with one no better than the other. (Refer to Figure C for details). 

We figured out the compensating angle to by measuring the offset (opposite side) and the 

length of T2 (hypotenuse) and using the sine function as it applies to right triangles. This 
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value is assigned to the constant. CORRECT, in the program and is added to the rotation of 

servo 2 to make it rotate slightly clockwise. 

Future Projects 

After we solved all of the various problems, the program performed correctly, and 

the project was a success. (Refer to the test runs in the Program Appendix). However, 

there is still a great deal of work left for future researchers. 

Full Three-Dimensional Implementation 

The first project should probably be to tum this two-dimensional program into a full 

three-dimensional implementation. This can be achieved by combining two versions of the 

program located in the Program Appendix: one for each of the horizontal and vertical 

movements. If you look at Figure C, one set of equations would apply to servos 1 and 2 

and another set to servos 3 and 4. Starting at the claw, one would work backward through 

the servos, towards the base, to get a solution. Servos 3 and 4 would directly relate to' 

servos 1 and 2 respectively as they are used in the current implementation. The intersection 

point between the circles around the end of link r] and servo 3 would occur when the circle 

from servo 3 reaches the height of r]. 

Vision Processing 

Another important project would be vision processing. This would allow Shelley to 

actually view her environment and "intelligently" select objects to manipulate. Ideally, she. 

would be able to triangulate distance with her stereoscopic vision in the same manner as a 
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human being. This would allow her to move her arm to a specific object location without 

requiring coordinates from the user. The coordinate system would be built into her 

programmmg. 

Kinematic Calibration 

Vision processing would lead to other capabilities such as kinematic calibration[l]. 

In this technique. the robot self-calibrates its arms by moving to all extremes, viewing the 

results and taking optical measurements, and storing the data for calculations in the 

movement program. Shelley would be able to calculate, on her own, the lengths of the 

links and the rotational limitations of the servos in her arms. This would be particularly 

useful because the servo rotation values tend to change due to usage. At this point, the 

human operator must take all the detailed measurements. 

Trajectory Planning 

Another capability would be trajectory planning[3]. This is where a spline path is 

created to represent the movement of the arm from the current position to the desired 

position. The eyes would be able to scan this path and determine if any objects are 

obstructing the movement of the arm. Then the path could be modified if necessary. 

Touch Sensitivity 

Along the same sensory input line, having touch sensitivity would also be a 

tremendous asset. Shelley would be able to grasp objects without having to worry about 

.. their dimensions. :III 

.. 

.. 
w 

-:III 

She could simply squeeze until a desired pressure between the claw and 
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I~[=
[3 the object was achieved. This capability could also keep her from damaging any delicate 

... ;' items she is manipulating and from attempting to pick up an item which is too heavy for 

[=
 
her anns to handle. A heavy object would just slide out of the claw ifshe were squeezing it
 l:

with the correct intensity. 

[= Conclusion 

[~ The program resulting from this project is an important step in the development of 

I: Shelley as an autonomous "being." The program functions properly, and it may be used, as 

is, to do simple manipulation which only requires two-dimensional coordinates. An 
~= 

I - example of this is tic-tac-toe. Placing marbles on a tic-tac-toe board requires only two­
-~= 

-- dimensional position coordinates if the ann is positioned such that the vertical movement I
[= ofthe claw is the same for every spot. In other words, the claw drops in exactly the same 

- -
~= 

manner to lower a ball into any of the nine positions on the board. In fact, Shelley defeated [ ­-
Illinois State's robot, IRIS. at a tic-tac-toe competition on Saturday, April 12 during the [=-- research conference. She also perfonned admirably the following Sunday against human ~= 

I ­- competitors at Family Day. 

Without too much work, a future researcher could transfonn the program into a full I:
~:

(! three-dimensional implementation. The goal behind the general techniques I utilized was 
-f=-­

to provide a flexible platfonn for easy modifications in the future, and I feel I have acheived 
- -,

this through both the mathematical model I have outlined and the program which r:
implements it.i=
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Figure A 

Six Different Robotic Arm Joint Designs 
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Four Different Robotic Arm Designs 
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Figure 8 

[3] 

30 

Cylindrical 

Revolute 



a-or I 
Eod-EfI'rctor 

31 

Figure C 

Shelley's General Ann Layout 

Robix User's Manual (http://www.robix.com) 



Figure D
 

Arm Kinematics Block Diagram
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Figure E 

(htk) 

Two-Dimensional Horizontal Breakdown Top View 

(O,O)=Base; (h,k)=end-effector; (x,y)=primary intersection point 
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Figure F 

Minimum Ann Reach Schematic 
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Figure G 

Minimum Intersection y Value Schematic 
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/*	 filename: tttarms2.c */ 

/*	 Craig Materick 
CS 499 - Research Honors 
Spring 1997 
2D simulation of Shelley's arm movement 

The CODE # markers work in conjuntion with the research honors paper 
*/ 

#include <math.h>
 
#include <stdio.h>
 
#include <iostream.h>
 
#include <unistd.h>
 

/* so we can work in radians */
 
#define PI 3.141592653589793
 

/* radian constants */
 
/* min and max rotation assumed to be equidistant from 0 */
 
#define SERV01MAXR (PI/2.0)
 
#define SERV02MAXR (PI/2.0)
 

/* robix step constants */
 
/* max rotation */
 
#define SERV01MAXS 1400
 
#define SERV02MAXS 1400
 

/* segment length constants */
 
#define r1 10.0
 
#def ine r2 13. 0
 

/* angle to correct for offset of the claw */
 
#define CORRECT ((4.965*PI)/180.0)
 

/*	 Min reach constant */
 
/********************CODE 1********************/ 
#define MINREACH sqrt(pow(r2*sin(PI-SERV02MAXR) ,2) + pow(r1-(r2*cos(PI-SERV02MAXR)) ,2)) 

/*	 prevents r1 from over-rotating */ 
/********************CODE 7********************/ 
#define MININSCTNY -(r1*sin(SERV01MAXR-(PI/2))) 

/*	 type to hold 3D floating point point coordinates */ 
typedef struct { 

float x, y, Z; 
threeDPType; 

/* function prototypes */
 
float Distance (threeDPType, threeDPType);
 
/* Input : 2 points (2D coordinates for this program)
 

Output: the floating point distance between the points 
*/
threeDPType GetIntersection1(threeDPType); 
/* Input : the coordinates of the end-effector as a point variable 

Output: the coordinates of the intersection of the two circles 
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Uses subtraction in ~~e solution of the quadratic equation 
Assumes that ~here is ac least one interseccion point 

*/ 
threeDPType GetInterseccion2(threeDPType); 
/* Input : the coordinates of the end-effector as a point variable 

Output: the coordinates of the intersection of the two circles
 
Uses addition in the solution of the quadratic equation
 
Assumes that there is at least one interseccion point
 

*/ 
float GetServo1Angle(threeDPType) i 

/* Input : the coordinates of the intersection point 
Output: the angle of servo 1 in radians 
Assumes the base is at (0,0,0) 

*/ 
float GetServo2Angle(threeDPType, threeDPType)i 
/* Input : the coordinates of the intersection point 

Output: the angle of servo 2 in radians 
Assumes the base is at (0,0,0) 

*/ 
int AngleToStepServo1(float) i 

/* Input : the rotation of servo 1 in radians 
Output: the rotation of servo 1 in Robix steps
 
assumes proper constants have been defined to compare the two
 

*/ 
int AngleToStepServo2(float); 
/*	 Input : the rotation of servo 2 in radians 

Output: the rotation of servo 2 in Robix steps 
assumes proper constants have been defined to compare the two 

*/ 

int main () 
{ 

threeDPType base, eeffector, intersect;
 
float servolangle, servo2angle, eedisti
 
int stepl, step2i
 

/* Where, in the coordinate system is the base at? */ 
/* can be changed with future development */ 

base.x = OJ
 
base.y = OJ
 
base.z = 0;
 

/* Object Location input */ 
printf("X coordinate of end-effector: ") i 

scanf("%f", &eeffector.x) i 

printf("Y coordinate of end-effector: ") i 

scanf("%f", &eeffector.y) i 

/* find the distance from the end-effector to the base */ 
eedist = Distance(eeffector, base) i 

/* check if it is too close or far away */
if (eedist < MINREACH) 

printf("\nThe end-effector coordinates are too close to the base (0,0) \n") ; 
else if (eedist > (rl+r2)) 

printf("\nThe end-effector coordinates are too far from the base (0,0) \n ") ; 



r
 
...
...
 ...... ,~, 

Apr 23 08:30 1997 /home/cmateric/tttarms2.c Page 3 

else 
{ 

intersect = Getlntersectionl(eeffector) i 

/* check if we are asking for too much rotation from servo 1 */ 
/* if so, try ano~her intersection point */ 

if (intersec~.y < MININSCTNY) 
intersect = Getlntersection2(eeffector); 

/* check if the new angle is OK */ 
/* if not, the program is over */ 

if (intersect.y < MININSCTNY) 
printf("\nEnd-effector coordinates not in work envelope(servo l)\n") i 

/* if the rotation is fine, we continue onward */ 
else 
{
 

servo1angle = GetServolAngle(intersect);
 
printf("Intersection X: %f\n", intersect.x) i
 

printf("Intersection Y: %f\n", intersect.y);
 
printf("servo 1 angle: %f\n", servolang1e) i
 

stepl = AngleToStepServol(servolangle) i
 

rrintf(lIservo 1 steps: %d\n", stepl) i
 

serv02angle = GetServ02Angle(intersect, eeffector); 
/* check if we are asking for too much rotation from servo 2 */ 

if (fabs(serv02angle) > SERV02MAXR) 
printf("\nEnd-effector coordinates not in work envelope(servo 2)\n"); 

/* if	 the rotation is fine, we continue onward */ 
else 
{
 

printf("servo 2 angle: %f\n", serv02angle);
 
step2 = AngleToStepServ02(serv02angle);
 
printf("servo 2 steps: %d\n\n", step2);
 

}	 /* else servo 2 OK */ 
} /* else servo 1 OK*/
 

} /* else distance OK*/
 
/* main */
 

float	 Distance (threeDPType pl, threeDPType p2) 
{/* finds the distance between two points using basic distance equation*/ 

float di 
d=sqrt((pow(pl.y-p2.y,2»+(pow(pl.x-p2.x,2»)i 
return di 
/* Distance */ 

threeDPType Getlntersectionl (threeDPType eel 
{	 /* returns the point of intersection using "_" */ 

/* when solving the quadratic equation */ 
threeDPType intrsctni 
float a, b, Ci 

/* if "k" equals zero */ 
if (ee.y -- 0) 
{ 

/* find a, b, and c for the quadratic equation */ 
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a = 1;
 
b 0;
 
c = (pow((pow(r1,2) - pow(r2,2) + pow(ee.x,2) +
 

pow(ee.y,2)) / (2*ee.x) ,2)) - pow(r1,2); 
/* solve for y using the quadratic equation */ 

intrsctn.y = (-b - sqrt(pow(b,2) - (4*a*c))) / (2*a); 
/* solve for x using y */ 

intrsctn.x = (pow(r1,2) - pow(r2,2) - (2*intrsctn.y*ee.y) + 
pow(ee.x,2) + pow(ee.y,2)) / (2*ee.x); 

.intrsctn.z = 0; 
/* if */ 

/* if "k" doesn't equal zero */ 
else 
{ 

/* find a, b, and c for the quadratic equation */ 
a (pow(ee.x,2) / pow(ee.y,2)) + 1; 
b = -((ee.x * (pow(r1,2) - pow(r2,2) + pow(ee.x,2) + 

pow(ee.y,2))) / pow(ee.y,2));
 
c = (pow((pow(r1,2) - pow(r2,2) + pow(ee.x,2) +
 

pow(ee.y,2)) / (2*ee.y),2)) - pow(r1,2); 
/* solve for x using the quadratic equation */ 
/********************CODE 2********************/ 

intrsctn.x = (-b - sqrt(pow(b,2) - (4*a*c))) / (2*a); 
/* solve for y using x */ 
/********************CODE 3********************/ 

intrsctn.y = (pow(r1,2) - pow(r2,2) - (2*intrsctn.x*ee.x) + 
pow(ee.x,2) + pow(ee.y,2)) / (2*ee.y); 

intrsctn.z = 0;
 
} /* else */
 
return intrsctn;
 
/* Getlntersection1 */
 

threeDPType Getlntersection2 (threeDPType eel 
{	 /* returns the point of intersection using "+" */ 

/* when solving the quadratic equation */ 
threeDPType intrsctn; 
float a, b, c; 

/* if "k" equals zero */ 
if (ee . y -- 0) 
{ 

/* find a, b, and c for the quadratic equation */ 
a = 1 ;
 
b 0;
 
c = (pow((pow(r1,2) - pow(r2,2) + pow(ee.x,2) +
 

pow(ee.y,2)) / (2*ee.x) ,2)) - pow(r1,2); 
/* solve for y using the quadratic equation */ 

intrsctn.y = (-b + sqrt(pow(b,2) - (4*a*c))) / (2*a); 
/* solve for x using y */ 

intrsctn.x = (pow(r1,2) - pow(r2,2) - (2*intrsctn.y*ee.y) + 
pow(ee.x,2) + pow(ee.y,2)) / (2*ee.x); 

intrsctn.z = 0; 
/* if * / 

/* if "k" doesn't equal zero */ 
else 
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( 
/* find a, b, and c for the quadratic equation */ 

a (pow(ee.x,2) / pow(ee.y,2)) + 1; 
b = -((ee.x * (pow(rl,2) - pow(r2,2) + pow(ee.x,2) + 

pow(ee.y,2))) / pow(ee.y,2)); 
c = (pow((pow(rl,2) - pow(r2,2) + pow(ee.x,2) + 

pow(ee.y,2)) / (2*ee.y) ,2)) - pow(rl,2); 
/* solve for x using che quadratic equation */ 

intrsctn.x = (-b + sqrt(pow(b,2) - (4*a*c))) / (2*a); 
/* solve for y using x */ 

intrsctn.y (pow(rl,2) - pow(r2,2) - (2*intrsctn.x*ee.y) + 
pow(ee.x,2) + pow(ee.y,2)) / (2*ee.y); 

intrsctn.z 0;
 
} /* else */
 
return intrsctn;
 
/* GetIntersection2 */
 

float GetServolAngle(threeDPType i) 
( /* returns the angle of servo 1 in radians based on the intersection point */ 

float theangle; 
/********************CODE 4********************/ 

theangle = asin(i.x/rl) ; 
return theangle; 
/* GetServolAngle */ 

int AngleToStepServol(float angle) 
(	 /* converts the calculated angle to robix steps */ 

int steps; 
float temp; 

/* find percent rotation */ 
temp = angle / SERV01MAXR; 
steps = floor((temp*SERV01MAXS) + 0.5); 
return steps; 
/* AngleToStepServol */ 

float GetServ02Angle(threeDPType i, threeDPType 0) 
{ /* returns the angle of servo 2 in radians based on the intersection point */ 

float slope, dist, theangle, tempx; 
/* if segment 1 has an undefined slope */ 

if (Lx == 0) 
( 

dist = fabs(o.x);
 
tempx = i.x; /* the x value on the segment 1 "line" at the y value
 

of the end-effector */
 
}	 /* if */ 
else 
{ 

/* get the slope of segment one, currently assumes the base is at (0,0,0) */ 
slope = i.y / i.x; 

/* find the distance using the special distance equation */ 
/********************CODE 5********************/ 

dist = fabs((-slope*o.x) + o.y) / sqrt(pow(slope,2) + 1); 
/* the x value on the segment 1 "line" at the y value of the end-effector */ 

tempx = o.y / slope; 
} /* else */ 

/********************CODE 6********************/ 
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[ theangle = asin(dist/r2); 

i'
-~ /* now we have to determine if it's positive or negative rotation*/ 

if (tempx > o.x) 
theangle *= -1; 

/* correct for the offset of the claw */ 
theangle += CORRECT; 
return theangle;
 
/* GetServo2Angle */
i' I int AngleToStepServo2(float angle) 

{ /* converts the calculated angle to robix steps */ 
int steps;i'l float temp; 

_. L /* find percent rotation */ 
temp = angle / SERV02MAXR; 
steps = floor((temp*SERV02MAXS) + 0.5); 
return steps; 
/* AngleToStepservo2 */ 
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Sample Input and Output f­
..' . 

This sample data is intended to show that the mathematical calculations work. 
***In all the tests, the angle of servo 2 has the claw offset corection added to it.I.... 
Test One
 
Input:
 
X coordinate of end-effector: 0
 

I
I-'. Y coordinate of end-effector: 23 
-'I Output:
 

Intersection X: 0.000000
 
Intersection Y: 10.000000
 

I-'.r servo 1 angle: 0.000000
 
servo 1 steps: 0
 
servo 2 angle: 0.086656
 
servo 2 steps: 77
I-'.-'. Test Two (" Input 
X coordinate of end-effector: 23 
Y coordinate ofend-effector: 0 

(
-,I 

Output(_.. Intersection X: 10.000000 
Intersection Y: 0.000000

( servo 1 angle: 1.570796 

-,I servo 1 steps: 1400 
servo 2 angle: 0.086656 [___,I servo 2 steps: 77 

[ Test Three 
-.or Input: 

X coordinate ofend-effector: -7 

(I
Y coordinate ofend-effector: 16
 
Output:
 
Intersection X: -9.462180
 

(.1 
Intersection Y: 3.235296 

[ 
[ servo 1 angle: -1.241339 

servo 1 steps: -1106 
servo 2 angle: 1.518544 
servo 2 steps: 1353 

I_. 



Test One 

Base 
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Test Two 
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Base 
(0.0) 

r 1 = 10 f 2 = 13 
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Test Three 
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