
Illinois Wesleyan University

Digital Commons @ IWU Digital Commons @ IWU

Honors Projects Computer Science

1997

Mapping Robotic Movement to a Three-Dimensional Coordinate Mapping Robotic Movement to a Three-Dimensional Coordinate

System System

Craig A. Materick '97
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/cs_honproj

Recommended Citation
Materick '97, Craig A., "Mapping Robotic Movement to a Three-Dimensional Coordinate
System" (1997). Honors Projects. 12.
https://digitalcommons.iwu.edu/cs_honproj/12

This Article is protected by copyright and/or related rights. It has been brought to you by Digital
Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any
way that is permitted by the copyright and related rights legislation that applies to your use. For
other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights
are indicated by a Creative Commons license in the record and/ or on the work itself. This material
has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information,
please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.

http://www.iwu.edu/
http://www.iwu.edu/
https://digitalcommons.iwu.edu/
https://digitalcommons.iwu.edu/cs_honproj
https://digitalcommons.iwu.edu/cs
https://digitalcommons.iwu.edu/cs_honproj?utm_source=digitalcommons.iwu.edu%2Fcs_honproj%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.iwu.edu/cs_honproj/12?utm_source=digitalcommons.iwu.edu%2Fcs_honproj%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@iwu.edu

- --------------------

Mapping Robotic Movement to a

Three-Dimensional Coordinate System

Craig A. Materick and Dr. Lon Shapiro*

Illinois Wesleyan University

Department ofComputer Science

Table of Contents

Abstract. I

Historical Background 3

The Industrial Revolution . . 4

Robotic Tasks 5

Welding . .. 5

Material Handling 6

Machine Loading and Unloading... ..6

SF"'- pray InISh'mg................. . ..6

Machining 6

Assembly 6

Inspection 7

Remote Manipulation 7

Joint and Ann Designs 8

Robot Ann Kinematics 9

The Direct Kinematics Problem 10

The Inverse Kinematics Problem 11

Choosing The Method 12

Breakdown of Shelley's Arm Movement.. 13

Mathematical Model of Shelley's Ann Control.. 15

Problems and Solutions 20

Joint Over-rotation 20

Symmetric Rotation 22

k Coordinate ofEnd-effector Equal To Zero 22

Servo 2 Rotation Calculations 22

Claw Offset. 23

Future Projects 24

Full Three-Dimensional Implementation .24

Vision Processing 24

Kinematic Calibration 25

Trajectory Planning 25

Touch Sensitivity : 25

Conclusion 26

References 27

Figure A (Robotic Ann Joints) 29

Figure B (Robotic Anns) 30

Figure C (Shelley General Ann Layout) 31

Figure D (Kinematics Block Diagram) .32

Figure E (Two-Dimensional Top View) 33

11

Figure F(Minimum Ann Reach)

Figure G (Minimum Intersection y Value)

Program Appendix

- includes Sample Input and Output

III

.34

35

after text page 36

• •

Abstract

Title: Mapping Robotic Movement to a Three-Dimensional Coordinate System

The Illinois Wesleyan Intelligence Network on Knowledge (I.W.I.N.K.) is a project

to design and implement an artificial"person'" named Shelley. Robotics, networking, and

artificial intelligence will be the main topics of the preliminary work. For my research

honors project I designed the three-dimensional coordinate system in which the robotic

arms move and interact with objects. The anns we have constructed are based on an

arrangement of six servos, each of which rotate approximately 185 degrees. The program

takes in data about the location of an object in three-dimensional coordinates and moves

each of the six motors in the ann to arrive at that point. The mathematics involved is based

on intersecting circles using the following equation:

(x-h/ + (v-k/ = r
(Assuming the center of the circle is (h,k) and the radius is r)

Included in this work is a look at robotic arm developments through history, from Leonardo

da Vinci through the Industrial Revolution, and beyond. Also discussed are the various

joint and arm designs developed during these years of research and some robotics projects

which employ these different designs. Next, we will investigate the various methods of

control developed by other robotic arm research projects and apply one particular method to

control Shelley, as briefly outlined above. Finally, we will highlight problems we faced

1

l.~

[~

-= during the implementation of this program, the solutions to these problems, and various

I:: ideas about future research possibilities.

l~
I.
1- •...
I:~r:r:
r=
r~r:
r:r:
i:
i~

-

i-:
rr• ..

2

ill•

ii

Historical Background

In 1818, Mary Shelley penned the novel. Frankenstein, and the concept of recreating

humans through technology was popularized. In fact Mary Shelley subtitled the book The

Modern Prometheus after the Titan in Greek mythology who fashioned the first human

beings out of clay. [2] Currently, Mary Shelley's name is once again associated with the

recreation of humans through technological means. Shelley is the name of the robot Illinois

Wesleyan University students and faculty are undertaking to create.

For centuries, humans have been interested in recreating themselves through

technology. Some of the earliest signs can be seen in cave paintings and the sculptures of

ancient Greece and Rome. Robotics can be seen as a logical extension of sculpting and

other art forms. The artisans used whatever technology was available to them. Depending

on the definition one considers, something as ordinary as a washing machine could be

considered a robot. Webster's dictionary defines robot as "an automatic device that '

performs functions ordinarily ascribed to human beings."[3] However, most studies in the

history of robotics focus on projects that fit the more precise definition used by the Robot

Institute ofAmerica: "A robot is a reprogrammable multi-functional manipulator designed

to move materials, parts, tools, or specialized devices, through variable programmed

motions for the performance ofa variety oftasks."[3] The first real signs of development

in robotics can be seen in the work of Leonardo da Vinci. Although he is notorious for his

incomplete works[5], he made detailed studies into the anatomy of human arms and applied

3

this knowledge to several projects. Since his main area of interest was flight, most of his

sketches and models used this research to produce articulated wing structures designed to

allow man to fly. These devices do not exactly fit the second strict robot definition given

above, but they are commonly considered the first true beginnings of modem robotics. The

technology expanded in small steps for many years until the Industrial Revolution.

The Industrial Revolution

The Industrial Revolution provided both the need for and the technology to produce

robotics. These robots were classified as industrial robots which are defined as "a general

purpose, computer-eontrolled manipulator consisting of several rigid links connected by

revolute or prismatic joints. One end of the chain is attached to a supporting base, while

the other end is free and equipped with a tool to manipulate objects or perfonn assembly

tasks."[3] This definition is somewhat restrictive because it implies that true industrial

robots must have some level of intelligence. To slightly broaden this definition, humari­

controlled robots are often included. Industrial robots are nonnally used to perfonn

relatively simple, repetitive tasks which have been programmed in by a human user. Early

work can be traced to the period immediately following World War n.[3] During the late

1940s, research programs were started at the Oak Ridge and Argonne National

Laboratories to develop remotely controlled mechanical manipulators for handling

radioactive materials. These systems were master-slave configurations. In other words,

they were designed to reproduce hand and arm motions made by a human operator in a

4 --....

remote location. The master manipulator was guided by the user through a sequence of

movements, while the slave manipulator duplicated the master as closely as possible. New,

more sophisticated robotics were developed by men like Joseph Engelberger and George

Devol known as the "Father" and "Grandfather of industrial robotics" respectively. [2]

Devol is credited with receiving the first industrial robot patent in 1950 and for designing a

playback system for teaching machine tools to remember their motions. [2] When applied

to robots, this technology allowed users to simply program robot motion instead of directly

controlling it. Engelberger is known for combining Devol's ideas from above with his own

business savvy to lead Unimation Inc., the first industrial robotics company, to the top of its

field. [2]

Robotic Tasks

During the Industrial Revolution, robots were developed to perform many tasks

including welding, material handling, machine loading and unloading, spray finishing;

machining, assembly, inspection, and remote manipulation. [2]

Welding

Welding comes in two forms, spot and arc, and is the largest industrial robotic

application. Accuracy, heat resistance, and speed are the keys to the success of welding

robots. Current models like the German-made KUKA and others are used for welding in

automobile plants around the world. They provide higher quality cars produced faster than

any human assembly line could. Specialized units like the KUKA 200[2] are designed to

5

spot-weld extremely curved surfaces. and this ability lends to an ever increasing degree of

flexibility in tasks.

Material Handling

Material handling is the second largest industrial robot application. A common

material-handling job is the grouping and/or removing of parts as they come down a

conveyor.

Machine Loading and Unloading

Similar to the material handling application is machine loading and unloading in

which robots pick up and transfer parts to and from machines. These robots are mainly

used in foundries to remove parts from casts.

Spray Finishing

Spray finishing includes the application of paints and other decorative and

protective coatings. The benefits of using robotics for this task are even coverage, speed,

and lower costs due to reduced fresh air requirements.

Machining

Machining includes cutting, grinding, polishing, drilling, sanding, buffing,

deflashing, and deburring. This application requires extremely accurate, often complex

robotics, but the benefits are increased speed, uniformity, and output accuracy.

Assembly

The assembly application includes means of combining parts other than welding

6

including fitting together parts, and holding them together with nuts, bolts, screws, and

bonding. Eighty-five percent of all manual labor expended in U.S. industry can be

classified as assembly. [2] Many of these tedious and repetitive positions can and are being

"manned" by robots. For this project, we will not go into the various ethical questions that

arise over replacing humans with robots.

The first industrial robot developed especially for assembly was the PUMA

(programmable universal machine for assembly) by Unimation, Inc.[2] Various models in

the PUMA line are still used for tasks ranging from small-appliance assembly, electrical

component insertion, and wire harness wrapping. One of the most popular robotic

assembly tasks is the manufacture of printed circuit boards for computers and many other

electrical components. A robot can produce such detailed products far more rapidly and

efficiently than a human could.

Inspection

Inspection robots use either tactile or visual data to detennine the quality ofa

product. They are often associated with assembly robotics to ensure that the work is being

done to the specified tolerances.

Remote Manipulation

Finally, remote manipulators are another popular application of industrial robots.

Often, they utilize the master/slave convention as previously described. Examples can be

seen in underwater exploration and the space program. The benefits of such robots are

7

!II....

extraordinary. If manufactured correctly, they can withstand extreme and dangerous

conditions. and allow humans to "go" places we would not normally have access to like

distant planets and the depths of the ocean. Although Shelley is an educational robot, and

not an industrial robot. it is important to look at industrial robot development. Without the

Industrial Revolution and the advances in industrial robotics, we would not be able to

assemble a multi-functional, dextrous manipulator like Shelley.

Joint and Arm Designs

From all of the robotics research over the years, many joint and arm designs have

been developed. Each joint design was created to fulfill a specific task. Figure A contains

images of the various joints. They can be split into two basic categories. The sliding group

includes the cylindrical, prismatic, and planar joints which all involve one surface sliding

on or through another. The other joints allow only for rotation. The screw joint is a hybrid

ofthe two categories. It allows controlled sliding. In other words, the central portion'

slides through the outer ring, but the sliding is controlled by the rotation of the central

cylinder. In comparison, the prismatic inner cylinder simply slides without rotation, and

the inner cylinder of the cylindrical joint slides with or without rotation. Various

combinations of these joints can be used to produce different types of arms. Four different

variations can be found in Figure B. These four motion-defined categories are: cartesian

coordinate, cylindrical coordinate, spherical coordinate, and revolute or articulated

coordinate. The defining factor for the categories is the number and type of axes.

8

Cartesian arms have three linear axes. IBM's RS-l model is an example of this design.

The Versatran 600 robot from Prab is a cylindrical coordinate arm and has one rotary and

two linear axes. Spherical coordinate arms have one linear and two rotary axes while

revolute coordinate arms have three rotational axes. The 2000B and the PUMA from

Unimation Inc.[3] are examples of these two models respectively. Shelley is composed of

revolute joints. From Figure A, one can see that the basic design of the revolute joint

allows only rotation in two directions, say clockwise and counter-clockwise, around a fixed

point. This rotation value, in degrees, radians, or servo steps, is the data we need to keep

track of when calculating Shelley's arm movements. Although Shelley's arm design is not

identical to the one pictured in Figure B, it is a type of revolute or articulated arm. A

sample of Shelley's arm design can be found in Figure C.

Robot Arm Kinematics

Now that we have looked at some historic developments and types of arms, we can

investigate different possible solutions to the arm control problem we attempted to solve

for Shelley's arms. Controlling the final position ofa robotic arm, not the path of motion,

is a specialized kinematic problem. Robot arm kinematics deals with the analytical study of

the geometry of a robot arm with respect to a fixed coordinate system without regard to the

forces that cause the motion. It deals with the relation between the joint rotations and the

position and orientation ofthe end-effector.[3] Applied to Shelley's layout in Figure C,

kinematics studies the rotation of servos I through 6 and the resulting position of the claw.

9

There were two ways to look at this problem. First, if we looked at each servo and link

individually, starting with I and working towards 6, we could tell where the claw would

finish. On the other hand, we could work backwards by assigning a location for the claw

and then determining the rotational settings required of the servos, working from 6 to I, to

deliver the claw to that point. These two approaches are the basis of the two problems in

the study of kinematics. These two fundamental problems are designed to answer the

following questions of specific interest in robot arm kinematics[3]:

I. For a given manipulator. given the joint angle vector and the geometric link

parameters, where n is the number of degrees of freedom, what is the position and

orientation of the end-effector of the manipulator with respect to a reference

coordinate system?

2. Given a desired position and orientation of the end-effector ofthe manipulator

and the geometric link parameters with respect to a reference coordinate system, can

the manipulator reach the desired position and orientation? And if it can, how many

different manipulator configurations will satisfy the same condition?

The first question outlines the direct kinematics problem while the second refers to the

inverse kinematics problem. The block diagram in Figure D indicates the relationship

between these two problems.

The Direct Kinematics Problem

The direct method looks at the properties of each joint and link starting at the base

10

to determine the position of the end-effector. Each joint-link pair constitutes one degree of

freedom. In Shelley's case, she had essentially six joint-link pairs, resulting in six degrees

of freedom. Since the links may rotate and/or translate with respect to a reference

coordinate system, the total spatial displacement of the end-effector is due to the angular

rotations and linear translations of the joint-link pairs. One of the most popular methods to

solve the direct kinematics problem is a generalized and systematic approach utilizing

matrix algebra to describe and represent the spatial geometry of the joint-link pairs of the

robot arm with respect to a fixed reference coordinate system. This solution is referred to

as the Denavit and Hartenberg method[3]. Essentially, this method uses a homogeneous

transformation matrix to describe the spatial relationship between any two adjacent links.

When chain-multiplied together, this set of matrices produces one matrix that represents the

spatial geometry of the entire arm in terms of an attached coordinate system. In other

words, location of the end effector is given in terms of the special arm coordinate syst~m,

not the cartesian world coordinate system, or a further homogeneous transformation matrix

must be found to relate the two coordinate systems.

The Inverse Kinematics Problem

The inverse kinematics problem works essentially opposite to the direct problem.

The claw is positioned as needed, and then we work backwards through the joints, or

servos, to determine the required rotational settings of each one. All calculations are done

based on the world cartesian coordinate system instead ofan arm-attached reference frame.

11

Once again, matrix algebra may be used to solve the inverse problem in much the same way

as it is used to solve the direct problem. The only differences would be that the matrices

are chain-multiplied in reverse order, and, since the matrices for each joint-link pair in the

inverse solution are given in terms of the world coordinate system and not an attached

coordinate system, there is no need to calculate an extra homogeneous transformation

matrix to convert between the two coordinate systems.

A more straight-forward approach, known as the geometric approach, to the inverse

kinematics problem is also available. In this method, the reach, or work envelope, ofeach

joint-link pair is studied and represented with a geometric shape. The intersection points of

these geometric work envelopes are calculated starting at the end-effector and working

back towards the base. One intersection point between each joint-link pair's work envelope

and that of the next joint-l ink pair in the chain is chosen to represent a joint in the robotic

arm. Ifall of the work envelopes intersect without requiring more rotation from any servo

than it can provide, a solution is found. From the many intersection points, we can

calculate the rotational settings ofthe various servos. In Shelley's case, since the joints are

all revolute (Figure A), the geometric shapes representing the joint-link pair work

envelopes are all simple circles centered at a servo, or the end-effector coordinates. (Refer

to Figure E for an example of two joint-link combinations from Shelley's arms).

Choosing The Method

For our project, we were looking for the most straight-forward, least complicated

12

solution to controlling Shelley's arms. We first decided that since we wanted to input the

end-effector coordinates in terms of a world coordinate system and have the program

output the required rotational settings of the servos, the inverse kinematics problem was the

best approach because the direct kinematic approach solves a completely different problem

where the servo settings are known and the end-effector position is the calculated value. As

previously noted, the work envelopes of the joint-link pairs in Shelley's arms could be

represented by simple circles. For this reason, the geometric approach made more sense

than using the far more complicated matrix algebra approach. As is the goal with most

projects of this type, we wanted to keep things as simple as possible to provide a simple

platform on which to build with future research.

Breakdown of Shelley's Ann Movement

Shelley's arms, manufactured by Robix/Advanced Design, Inc.

(http://www.robix.com). contain six revolute servos, each of which rotates approximately

180 degrees. (Refer to Figure C for a picture of one of Shelley's arms). The rotation

properties of the servos and the lengths of the links connecting them determine the overall

work volume of the arm. The problem we were attempting to solve was: if we specify a

location in three-dimensional space, how do we determine the rotational settings for each

servo such that the end-effector reaches that location? To complicate this, there was the

added fact that Shelley's vision capabilities were, and are, non-existent. This meant that the

technique used to calculate the arm movements needed to be very precise because she could

13

not make the fine adjustments a typical human being would make when reaching for an

object.[7] We reached a point where we knew which technique we wanted to employ, the

geometric solution to the inverse kinematics problem. It was time to break down Shelley's

arm movement and apply the technique.

The first thing that we decided when studying Shelley's general arm design was that

two servos (1 and 2) controlled the horizontal movement and two (3 and 4) controlled the

vertical movement. Servos 5 and 6 controlled the rotation and grasp of the claw,

respectively. The layouts of the two servos in each dimension were similar. This meant

that we could break up the three-dimensional movement into vertical and horizontal

portions to make the task easier. Figure E shows a top view of the horizontal portion of the

control scheme that was the focus of this project.

The next step was to break down this horizontal movement into the rotation of two

joints connected to two links. Figures 0 shows the two-dimensional system, pulled from

Figure C, that we were working with. The following description focuses on servos I and 2

and segments T] and T2 from Figure C. We started ofT with five known values and one

value provided by the user. The known values were the location of the base (0,0), the

length of both segments or links (T] and T2), and the rotation limitations ofeach of the two

joints (servos 1 and 2). We decided that the rotation of the servos would be measured in

positive and negative rotation compared to a centered zero value because the Robix kits and

driver software were designed to specifY the rotation in this manner. The coordinates of

14

the end-effector (h,k) would be input by the user. For this two-dimensional representation,

which provides only the horizontal movement of the arm, the end of link r 2 furthest from

the base was deemed the end-effector. This particular point was used because, in a full

three-dimensional implementation of this project, the far end of rcwould intersect with the

vertical system defined by servos 3 and 4.

Mathematical Model of Shelley's Arm Control

One end of r j was attached to the base while one end of r2 was always connected to

the end-effector coordinates. Since we were employing the geometric method, the range of

available reach for each link was represented by a circle as in Figure E. One circle was

centered at the base and had a radius equal to the length of rj • Assuming the base was at

(0,0) in our two-dimensional system, the equation for this circle was:

{EQ I}

The assumption that the base was at (0,0) simplified several calculations, but it also cut

down on the flexibility of the program to a certain extent because each arm would have

needed its own coordinate system. Since we were only working with one arm for this

project, this assumption was fine, but future projects to integrate both arms should allow

for base of either arm to be at any coordinates. The second circle was centered on the end-

effector coordinates (h,k) and had a radius equal to the length of r 2. The equation of this

circle was:

(x - hl + (y - kl = r/ {EQ2}

15

Servo 1 and its associated angle (A /) were located at the base while servo 2 and its

angle (A2) were located at the intersection point (x.y) between the two circles. (Refer to

Figure E for details). The next step was to find this intersection point

We first had to make sure that the circles did intersect. We decided that if the end-

effector coordinates were neither beyond the maximum reach of the two links nor closer

than some minimum reach, then the two circles would intersect. The maximum reach was

just the length of both segments, r j and r], added together, but the minimum reach required

some more calculations. With servo 1 set to any value, the minimum reach was based on

the maximum rotation of servo 2 as shown in Figure F. The equations involved were as

follows:

a = servo 2 max rotation {EQ 3}

8 = Jr- a {EQ4}

B = r2 sin 8 {EQ 5}

C = r2 cos 8 {EQ 6}

{EQ 7}

Distance = (A J + IYi' {EQ 8}

The resulting code for this calculation was:

#define MINREACH sqrt(pow(r2*sin(PI-SERV02MAXR),2) +

pow(rl-(r2*cos(PI-SERV02MAXR)),2») {CODE I}

Now that we had these minimum and maximum distance values, we knew that if the end-

effector coordinates were neither too far nor too close to the base, then there would be at

16

least one intersection point between the two circles. For this project, we were not

concerned about which of the two intersection points, if there were two as in Figure E, was

a better choice based on the current position of the arm because we only wished to use

whichever intersection led to a viable solution. A viable solution meant one which did not

require excess rotation from either servo. Ideally, the program would decide which

intersection point required the least arm movement from the current position, but this was

beyond the scope of this project.

The next step was to determine an intersection point (x,y). To accomplish this, we

simply solved both previous circle equations, {EQ 1} and {EQ 2}, simultaneously for x and

y. By subtracting {EQ 2} from {EQ 1} and solving for y we obtained:

y = -(hIk)x + ((r/-r/+li+k) / 2k) {EQ9}

by multiplying through on the quadratic terms and solving for y. Next, we substituted this

y value into the first circle equation{EQ I}:

r + [-hlk + ((r/-r/+li+lC) / 2k)J = r/ {EQ to}

Then, we set this equal to zero and simplified to determine the A, B, and C coefficients of

the x terms to solve for x using the quadratic formula:

A B c

These coefficients for the various x terms were then plugged into the quadratic equation

and a solution was found for x.

17

intrsctn.x = (-b - sqrt(pow(b,2) - (4*a*c))) / (2*a); {CODE 2}

The variables G, b, and c were previously defined as the x coefficients from {EQ 11 }. This

is where the existence of two intersection points caused a problem. Depending on whether

we added or subtracted in the quadratic equation solution, we got two different answers in

many cases. We chose to subtract first, and then to add only if the resulting value would

require a greater rotation than the servo's capabilities. The reasoning behind this was that

for the arm with which we were working, Shelley's left, negative rotation of servo I

translated into counter-clockwise rotation. Counter-clockwise rotation for that arm was

away from Shelley's head; and it made sense to try to avoid obscuring her "vision" or

making contact with the head. Once an appropriate value for x was found, we used it to

solve for yin {EQ 9}.

intrsctn.y = (pow(rl,2) - pow(r2,2) - (2*intrsctn.x*ee.x) +

pow(ee.x,2) + pow(ee.y,2)) / (2*ee.x); {CODE 3}

In the code example, ee.x and ee.y are equivalent to hand k, respectively. This gave us the

coordinates of our intersection point.

Once we obtained the coordinates of the intersection point (x,y), the calculation of

the values for the angles, AJ and A2, were the next step. From the layout in Figure E and

the knowledge that the sine ofan angle in a right triangle is equal to the opposite side over

the hypotenuse, we could calculated that:

Al = sin-J (x / rJ {EQ I2}

theangle asin(i.x/rl); {CODE 4}

18

This gave us the angle at which servo 1 needed to be set. Servo 2 was a little more

complicated. We needed to find the distance(L in Figure E) from the end-effector

coordinates to the "line" created by created by r,. Ifa line is defined by the equation:

Ax + By = C {EQ 13}

then the distance from a point (x,y) to the line would be[6]:

lAx + By - Cl / (A 2 + wi: {EQ 14}

This is based on drawing a line from the point perpendicular to the known line, and then

measuring the distance, using the basic distance formula, from the original point to the

point where the two lines intersect. Using the point-slope line equation, we defined the

"line" created by r, as:

y = slope *x {EQ IS}

The b variable from the basic point-slope equation is zero because we assumed that the

base was at (0,0). Also as a result of this assumption, the slope was equal to y/x. We '

converted {EQ IS} into the form of {EQ 13} and found the following values to substitute

in {EQ 14}:

A = -slope {EQ I6}

B=1 {EQ 17}

c=/ {EQ I8}

We plugged these values into the distance equation and obtained a value for the distance L

... ­
Ie- JI shown in Figure E.r~ 'I

dist = fabs((-slope*ee.x) + ee.y) I sqrt(pow(slope,2) + 1); {CODE5}

Next, we solved for the angle(A2) of servo 2 once again using the rules of right triangles

and the newly found L value:

{EQ 19}

theangle = asin(dist/r2); {CODE 6}

At this stage, we had both rotational settings, in radians, for the servos in question.

The last task was to convert from radians into Robix step values. We first manually

measured the maximum rotation of the servos in both radians and Robix step values. Next,

we found the percentage of maximum radian rotation we had just calculated for each servo.

Then, we multiplied this percentage by the maximum Robix step value that corresponded to

the maximum radian value for each servo. This gave us the rotational settings for servos 1

and 2 in Robix steps which we then input into the Robix control program to actually move

the ann.

Problems and Solutions

Joint Over-rotation

Along the way, we encountered some minor problems we had to solve. One conflict

arose when an intersection point was detennined {EQ 10 and EQ 11 }. We needed to make

sure that both servos could rotate to the extent that the solution demanded. Comparing the

solution to the maximum rotation value was the way to keep track of this for servo 2.

Servo 1 was a different situation. To avoid problems which arose regarding the over­

20

rotation of servo 1, we devised a method to check the y coordinate of the intersection point

to make sure that it was not less than some minimum value that r/ could reach based on the

rotation of servo 1. The schematic for this can be found in Figure G. The equations to

calculate this minimum y intersection value were:

« = max rotation ofservo , {EQ 20}

8=«-(1r/2) {EQ 21}

min. intersection = -(r' sin 8) {EQ 22}

#define MININSCTNY -(rl*sin(SERVOlMAXR-(PI/2))) {CODE 7}

This technique still worked even if the maximum rotation of servo 1 was less than 1r /2

because the negative sign in {EQ 22} then resulted in a positive minimum y intersection

value which was appropriate for the problem because r/ was still in the first quadrant of the

graph where both x and yare positive. This minimum y intersection value applied

regardless of positive or negative rotation of servo 1 because we adjusted the servos to

rotate the same amount on either side of the straight, zero position. If the rotation

demanded of servo I was not within range, we first tried the alternate intersection point

(adding when solving the quadratic equation instead of subtracting), and ended the program

only if the new rotation value was still out of range. If the rotation value calculated for the

servo 2 was out of range, the program would immediately stop and print an error message

to the screen.

21

Symmetrical Rotation

Another problem presented itself because we used the maximum rotation of either

servo for some calculations {EQ3 and EQ20}. To allow for simpler calculations, we had to

ensure that each servo could rotate the same number of degrees both directions from the

zero centered point. To do this, we had to pay close attention to the rotation of the servos

during installation.

k Coordinate of End-effector Equal To Zero

When calculating the intersection point {EQ 10 and EQ 11 }, we decided that we

needed to check if the k value of the end-effector coordinates (h,k) was zero. The equations

we used to solve for the intersection used k in the denominator. If k was zero, we simply

switched the solving order and solved for y first using the quadratic equation so that h

would be in the denominator instead of k. We then solved for x in terms ofy. (Refer to

functions Getlntersectionl and Getlntersection2, pages 3 to 5 in the Program

Appendix, to see the two orders of calculating and the system to check for k = o. We knew

that hand k could not both be zero because that would produce an error message that the

end-effector was too close to the base.

Servo 2 Rotation Calculations

When working with the angle for servo 2 {EQ 13 - EQ 19} we ran into additional

problems. The first problem was that it was possible to have an undefined slope for the

"line" created by extending rJo This happened when the x value of the intersection point

22

was zero. Ifit was equal to zero the distance (L) we wanted to calculate was simply the

absolute value of the h coordinate of the end-effector. and the x value on the "line" when

inserting k into the equation {EQ 15} for the line was just the x coordinate ofthe

intersection. Refer to function GetServo2Anqle (Program Appendix pages 4 and 5) to

see the execution of this check. This data was used in the solution to the following

problem. It was difficult to tell if the rotation of servo 2 should be positive or negative.

This was because the straight, zero position was in line with T/ and not the reference

coordinate system. An example of this is in Figure E. To solve this problem, we plugged

the k value of the end-effector into the previously described point-slope equation{ EQ 15}

for the "line" created by T/ and solved for x. If this calculated value was less than the h

value of the end-effector, then the rotation was positive. Otherwise, it was negative. This

routine can also be found in GetServo2Anqle (Program Appendix pages 4 and 5).

Claw Offset

The final problem we found was that the claw is offset to the left from the line of T2.

This problem was caused because the actual rotating part on the servos is not centered. We

had to decide if the claw was going to be offset to the right or the left during construction

based on the positioning of servos 5 and 6. The choice between an offset to the left or right

was completely arbitrary with one no better than the other. (Refer to Figure C for details).

We figured out the compensating angle to by measuring the offset (opposite side) and the

length of T2 (hypotenuse) and using the sine function as it applies to right triangles. This

23

value is assigned to the constant. CORRECT, in the program and is added to the rotation of

servo 2 to make it rotate slightly clockwise.

Future Projects

After we solved all of the various problems, the program performed correctly, and

the project was a success. (Refer to the test runs in the Program Appendix). However,

there is still a great deal of work left for future researchers.

Full Three-Dimensional Implementation

The first project should probably be to tum this two-dimensional program into a full

three-dimensional implementation. This can be achieved by combining two versions of the

program located in the Program Appendix: one for each of the horizontal and vertical

movements. If you look at Figure C, one set of equations would apply to servos 1 and 2

and another set to servos 3 and 4. Starting at the claw, one would work backward through

the servos, towards the base, to get a solution. Servos 3 and 4 would directly relate to'

servos 1 and 2 respectively as they are used in the current implementation. The intersection

point between the circles around the end of link r] and servo 3 would occur when the circle

from servo 3 reaches the height of r].

Vision Processing

Another important project would be vision processing. This would allow Shelley to

actually view her environment and "intelligently" select objects to manipulate. Ideally, she.

would be able to triangulate distance with her stereoscopic vision in the same manner as a

24

••

-.
- .
-.- ..

-iii-.

••
-iii

".-.'.

human being. This would allow her to move her arm to a specific object location without

requiring coordinates from the user. The coordinate system would be built into her

programmmg.

Kinematic Calibration

Vision processing would lead to other capabilities such as kinematic calibration[l].

In this technique. the robot self-calibrates its arms by moving to all extremes, viewing the

results and taking optical measurements, and storing the data for calculations in the

movement program. Shelley would be able to calculate, on her own, the lengths of the

links and the rotational limitations of the servos in her arms. This would be particularly

useful because the servo rotation values tend to change due to usage. At this point, the

human operator must take all the detailed measurements.

Trajectory Planning

Another capability would be trajectory planning[3]. This is where a spline path is

created to represent the movement of the arm from the current position to the desired

position. The eyes would be able to scan this path and determine if any objects are

obstructing the movement of the arm. Then the path could be modified if necessary.

Touch Sensitivity

Along the same sensory input line, having touch sensitivity would also be a

tremendous asset. Shelley would be able to grasp objects without having to worry about

.. their dimensions. :III

..

..
w

-:III

She could simply squeeze until a desired pressure between the claw and

25

III

I~[=
[3 the object was achieved. This capability could also keep her from damaging any delicate

... ;' items she is manipulating and from attempting to pick up an item which is too heavy for

[=

her anns to handle. A heavy object would just slide out of the claw ifshe were squeezing it
 l:

with the correct intensity.

[= Conclusion

[~ The program resulting from this project is an important step in the development of

I: Shelley as an autonomous "being." The program functions properly, and it may be used, as

is, to do simple manipulation which only requires two-dimensional coordinates. An
~=

I - example of this is tic-tac-toe. Placing marbles on a tic-tac-toe board requires only two­
-~=

-- dimensional position coordinates if the ann is positioned such that the vertical movement I
[= ofthe claw is the same for every spot. In other words, the claw drops in exactly the same

- -
~=

manner to lower a ball into any of the nine positions on the board. In fact, Shelley defeated [­-
Illinois State's robot, IRIS. at a tic-tac-toe competition on Saturday, April 12 during the [=-- research conference. She also perfonned admirably the following Sunday against human ~=

I ­- competitors at Family Day.

Without too much work, a future researcher could transfonn the program into a full I:
~:

(! three-dimensional implementation. The goal behind the general techniques I utilized was
-f=-­

to provide a flexible platfonn for easy modifications in the future, and I feel I have acheived
- -,

this through both the mathematical model I have outlined and the program which r:
implements it.i=

r= 26 ..
 ..iii

References

1.) An, Chae H.. et at Model-Based Control of A Robot Manipulator, The MIT Press,

Cambridge, Mass., 1988.

2.) Asimov, Isaac, and Frenkel, Karen A., Robots: Machines in Man's Image, Harmony

Books, New York, NY, 1985.

3.) Fu, K. S., et ai, Robotics: Control. Sensing. Vision. and Intelligence, McGraw-Hill

Book Company, New York, NY, 1987.

4.) Korein, James u., A Geometric Investigation of Reach, The MIT Press, Cambridge,

Mass., 1985.

5.) Rosheim, Mark E., Robot Evolution: The Development of Anthrobotics, John Wiley &

Sons, Inc., New York, NY, 1994.

6.) Thomas, George 8., and Finney, Ross L., Elements of Calculus and Analytic Geometry,

Addison-Wesley, Menlo Park, CA, 1989.

7.) Wickens, Christopher D., Engineering Psycholog:y and Human Performance, Harper

Collins, New York, NY, 1992.

27

Special Thanks to:

Dr. Lon Shapiro for assistance on some of the robotic control ideas and paper content

Dr. Keith Coates for assistance with some of the mathematical concepts

Dr. Susan Anderson-Freed for assistance with paper content

Dr. Lawrence Stout for participating in my defense

Karen Anderson for proof-reading

28

Figure A

Six Different Robotic Arm Joint Designs

[3]

Planar

Prismatic Cylindrical

Screw Spherical

29

Four Different Robotic Arm Designs

Spherical

Figure 8

[3]

30

Cylindrical

Revolute

a-or I
Eod-EfI'rctor

31

Figure C

Shelley's General Ann Layout

Robix User's Manual (http://www.robix.com)

Figure D

Arm Kinematics Block Diagram

Link. Parameters

t t
Joint

Angles .. I Direct
Kinematics

.. Position and
Orientation of

The End-Effector

Joint
Angles ~

Link Parameters

t t
Inverse

Kinematics ~

I
I
I
I
I
I
I
I _____..1

32

33

y

Figure E

(htk)

Two-Dimensional Horizontal Breakdown Top View

(O,O)=Base; (h,k)=end-effector; (x,y)=primary intersection point

x

Cirde2

Figure F

Minimum Ann Reach Schematic

y

II
/ c

j /
Ir1 ,

I~
/ /
/

A

Base
(0,0)

(O,O)=Base; (h,k)=end-effector; (x,y)=primary intersection point

34

'1

(x,y)

(h,k)

I
I
I min. intersctim y
I
I

35

Figure G

Minimum Intersection y Value Schematic

----...._~--

(O,O)=Base; (h,k)=end-effector; (x,y)=primary intersection point

Base
(0,0)

Program

Appendix

Apr 23 08:30 1997 /home/cmateric/tttarms2.c Page 1

/*	 filename: tttarms2.c */

/*	 Craig Materick
CS 499 - Research Honors
Spring 1997
2D simulation of Shelley's arm movement

The CODE # markers work in conjuntion with the research honors paper
*/

#include <math.h>

#include <stdio.h>

#include <iostream.h>

#include <unistd.h>

/* so we can work in radians */

#define PI 3.141592653589793

/* radian constants */

/* min and max rotation assumed to be equidistant from 0 */

#define SERV01MAXR (PI/2.0)

#define SERV02MAXR (PI/2.0)

/* robix step constants */

/* max rotation */

#define SERV01MAXS 1400

#define SERV02MAXS 1400

/* segment length constants */

#define r1 10.0

#def ine r2 13. 0

/* angle to correct for offset of the claw */

#define CORRECT ((4.965*PI)/180.0)

/*	 Min reach constant */

/********************CODE 1********************/
#define MINREACH sqrt(pow(r2*sin(PI-SERV02MAXR) ,2) + pow(r1-(r2*cos(PI-SERV02MAXR)) ,2))

/*	 prevents r1 from over-rotating */
/********************CODE 7********************/
#define MININSCTNY -(r1*sin(SERV01MAXR-(PI/2)))

/*	 type to hold 3D floating point point coordinates */
typedef struct {

float x, y, Z;
threeDPType;

/* function prototypes */

float Distance (threeDPType, threeDPType);

/* Input : 2 points (2D coordinates for this program)

Output: the floating point distance between the points
*/
threeDPType GetIntersection1(threeDPType);
/* Input : the coordinates of the end-effector as a point variable

Output: the coordinates of the intersection of the two circles

Apr 23 08:30 1997 /home/crnaceric/tttanns2.c Page 2

Uses subtraction in ~~e solution of the quadratic equation
Assumes that ~here is ac least one interseccion point

*/
threeDPType GetInterseccion2(threeDPType);
/* Input : the coordinates of the end-effector as a point variable

Output: the coordinates of the intersection of the two circles

Uses addition in the solution of the quadratic equation

Assumes that there is at least one interseccion point

*/
float GetServo1Angle(threeDPType) i

/* Input : the coordinates of the intersection point
Output: the angle of servo 1 in radians
Assumes the base is at (0,0,0)

*/
float GetServo2Angle(threeDPType, threeDPType)i
/* Input : the coordinates of the intersection point

Output: the angle of servo 2 in radians
Assumes the base is at (0,0,0)

*/
int AngleToStepServo1(float) i

/* Input : the rotation of servo 1 in radians
Output: the rotation of servo 1 in Robix steps

assumes proper constants have been defined to compare the two

*/
int AngleToStepServo2(float);
/*	 Input : the rotation of servo 2 in radians

Output: the rotation of servo 2 in Robix steps
assumes proper constants have been defined to compare the two

*/

int main ()
{

threeDPType base, eeffector, intersect;

float servolangle, servo2angle, eedisti

int stepl, step2i

/* Where, in the coordinate system is the base at? */
/* can be changed with future development */

base.x = OJ

base.y = OJ

base.z = 0;

/* Object Location input */
printf("X coordinate of end-effector: ") i

scanf("%f", &eeffector.x) i

printf("Y coordinate of end-effector: ") i

scanf("%f", &eeffector.y) i

/* find the distance from the end-effector to the base */
eedist = Distance(eeffector, base) i

/* check if it is too close or far away */
if (eedist < MINREACH)

printf("\nThe end-effector coordinates are too close to the base (0,0) \n") ;
else if (eedist > (rl+r2))

printf("\nThe end-effector coordinates are too far from the base (0,0) \n ") ;

r

...
...
 ,~,

Apr 23 08:30 1997 /home/cmateric/tttarms2.c Page 3

else
{

intersect = Getlntersectionl(eeffector) i

/* check if we are asking for too much rotation from servo 1 */
/* if so, try ano~her intersection point */

if (intersec~.y < MININSCTNY)
intersect = Getlntersection2(eeffector);

/* check if the new angle is OK */
/* if not, the program is over */

if (intersect.y < MININSCTNY)
printf("\nEnd-effector coordinates not in work envelope(servo l)\n") i

/* if the rotation is fine, we continue onward */
else
{

servo1angle = GetServolAngle(intersect);

printf("Intersection X: %f\n", intersect.x) i

printf("Intersection Y: %f\n", intersect.y);

printf("servo 1 angle: %f\n", servolang1e) i

stepl = AngleToStepServol(servolangle) i

rrintf(lIservo 1 steps: %d\n", stepl) i

serv02angle = GetServ02Angle(intersect, eeffector);
/* check if we are asking for too much rotation from servo 2 */

if (fabs(serv02angle) > SERV02MAXR)
printf("\nEnd-effector coordinates not in work envelope(servo 2)\n");

/* if	 the rotation is fine, we continue onward */
else
{

printf("servo 2 angle: %f\n", serv02angle);

step2 = AngleToStepServ02(serv02angle);

printf("servo 2 steps: %d\n\n", step2);

}	 /* else servo 2 OK */
} /* else servo 1 OK*/

} /* else distance OK*/

/* main */

float	 Distance (threeDPType pl, threeDPType p2)
{/* finds the distance between two points using basic distance equation*/

float di
d=sqrt((pow(pl.y-p2.y,2»+(pow(pl.x-p2.x,2»)i
return di
/* Distance */

threeDPType Getlntersectionl (threeDPType eel
{	 /* returns the point of intersection using "_" */

/* when solving the quadratic equation */
threeDPType intrsctni
float a, b, Ci

/* if "k" equals zero */
if (ee.y -- 0)
{

/* find a, b, and c for the quadratic equation */

r

Apr 23 08:30 1997 /home/cmaceric/tttarrns2.c Page 4

a = 1;

b 0;

c = (pow((pow(r1,2) - pow(r2,2) + pow(ee.x,2) +

pow(ee.y,2)) / (2*ee.x) ,2)) - pow(r1,2);
/* solve for y using the quadratic equation */

intrsctn.y = (-b - sqrt(pow(b,2) - (4*a*c))) / (2*a);
/* solve for x using y */

intrsctn.x = (pow(r1,2) - pow(r2,2) - (2*intrsctn.y*ee.y) +
pow(ee.x,2) + pow(ee.y,2)) / (2*ee.x);

.intrsctn.z = 0;
/* if */

/* if "k" doesn't equal zero */
else
{

/* find a, b, and c for the quadratic equation */
a (pow(ee.x,2) / pow(ee.y,2)) + 1;
b = -((ee.x * (pow(r1,2) - pow(r2,2) + pow(ee.x,2) +

pow(ee.y,2))) / pow(ee.y,2));

c = (pow((pow(r1,2) - pow(r2,2) + pow(ee.x,2) +

pow(ee.y,2)) / (2*ee.y),2)) - pow(r1,2);
/* solve for x using the quadratic equation */
/********************CODE 2********************/

intrsctn.x = (-b - sqrt(pow(b,2) - (4*a*c))) / (2*a);
/* solve for y using x */
/********************CODE 3********************/

intrsctn.y = (pow(r1,2) - pow(r2,2) - (2*intrsctn.x*ee.x) +
pow(ee.x,2) + pow(ee.y,2)) / (2*ee.y);

intrsctn.z = 0;

} /* else */

return intrsctn;

/* Getlntersection1 */

threeDPType Getlntersection2 (threeDPType eel
{	 /* returns the point of intersection using "+" */

/* when solving the quadratic equation */
threeDPType intrsctn;
float a, b, c;

/* if "k" equals zero */
if (ee . y -- 0)
{

/* find a, b, and c for the quadratic equation */
a = 1 ;

b 0;

c = (pow((pow(r1,2) - pow(r2,2) + pow(ee.x,2) +

pow(ee.y,2)) / (2*ee.x) ,2)) - pow(r1,2);
/* solve for y using the quadratic equation */

intrsctn.y = (-b + sqrt(pow(b,2) - (4*a*c))) / (2*a);
/* solve for x using y */

intrsctn.x = (pow(r1,2) - pow(r2,2) - (2*intrsctn.y*ee.y) +
pow(ee.x,2) + pow(ee.y,2)) / (2*ee.x);

intrsctn.z = 0;
/* if * /

/* if "k" doesn't equal zero */
else

Apr 23 08:30 1997 /home/cmateric/tttarms2.c Page 5

(
/* find a, b, and c for the quadratic equation */

a (pow(ee.x,2) / pow(ee.y,2)) + 1;
b = -((ee.x * (pow(rl,2) - pow(r2,2) + pow(ee.x,2) +

pow(ee.y,2))) / pow(ee.y,2));
c = (pow((pow(rl,2) - pow(r2,2) + pow(ee.x,2) +

pow(ee.y,2)) / (2*ee.y) ,2)) - pow(rl,2);
/* solve for x using che quadratic equation */

intrsctn.x = (-b + sqrt(pow(b,2) - (4*a*c))) / (2*a);
/* solve for y using x */

intrsctn.y (pow(rl,2) - pow(r2,2) - (2*intrsctn.x*ee.y) +
pow(ee.x,2) + pow(ee.y,2)) / (2*ee.y);

intrsctn.z 0;

} /* else */

return intrsctn;

/* GetIntersection2 */

float GetServolAngle(threeDPType i)
(/* returns the angle of servo 1 in radians based on the intersection point */

float theangle;
/********************CODE 4********************/

theangle = asin(i.x/rl) ;
return theangle;
/* GetServolAngle */

int AngleToStepServol(float angle)
(/* converts the calculated angle to robix steps */

int steps;
float temp;

/* find percent rotation */
temp = angle / SERV01MAXR;
steps = floor((temp*SERV01MAXS) + 0.5);
return steps;
/* AngleToStepServol */

float GetServ02Angle(threeDPType i, threeDPType 0)
{ /* returns the angle of servo 2 in radians based on the intersection point */

float slope, dist, theangle, tempx;
/* if segment 1 has an undefined slope */

if (Lx == 0)
(

dist = fabs(o.x);

tempx = i.x; /* the x value on the segment 1 "line" at the y value

of the end-effector */

}	 /* if */
else
{

/* get the slope of segment one, currently assumes the base is at (0,0,0) */
slope = i.y / i.x;

/* find the distance using the special distance equation */
/********************CODE 5********************/

dist = fabs((-slope*o.x) + o.y) / sqrt(pow(slope,2) + 1);
/* the x value on the segment 1 "line" at the y value of the end-effector */

tempx = o.y / slope;
} /* else */

/********************CODE 6********************/

l

[
....

[Apr 23 08:30 1997 /home!cmateric/tttarms2.c Page 6-.,
[theangle = asin(dist/r2);

i'
-~ /* now we have to determine if it's positive or negative rotation*/

if (tempx > o.x)
theangle *= -1;

/* correct for the offset of the claw */
theangle += CORRECT;
return theangle;

/* GetServo2Angle */
i' I int AngleToStepServo2(float angle)

{ /* converts the calculated angle to robix steps */
int steps;i'l float temp;

_. L /* find percent rotation */
temp = angle / SERV02MAXR;
steps = floor((temp*SERV02MAXS) + 0.5);
return steps;
/* AngleToStepservo2 */

Ii'l

i"

...·1

I.

I.

I­
I[.

I

[I
['

[I

r

[-, .

[

Sample Input and Output f­
..' .

This sample data is intended to show that the mathematical calculations work.
***In all the tests, the angle of servo 2 has the claw offset corection added to it.I....
Test One

Input:

X coordinate of end-effector: 0

I
I-'. Y coordinate of end-effector: 23
-'I Output:

Intersection X: 0.000000

Intersection Y: 10.000000

I-'.r servo 1 angle: 0.000000

servo 1 steps: 0

servo 2 angle: 0.086656

servo 2 steps: 77
I-'.-'. Test Two (" Input
X coordinate of end-effector: 23
Y coordinate ofend-effector: 0

(
-,I

Output(_.. Intersection X: 10.000000
Intersection Y: 0.000000

(servo 1 angle: 1.570796

-,I servo 1 steps: 1400
servo 2 angle: 0.086656 [___,I servo 2 steps: 77

[Test Three
-.or Input:

X coordinate ofend-effector: -7

(I
Y coordinate ofend-effector: 16

Output:

Intersection X: -9.462180

(.1
Intersection Y: 3.235296

[
[servo 1 angle: -1.241339

servo 1 steps: -1106
servo 2 angle: 1.518544
servo 2 steps: 1353

I_.

Test One

Base
(0,0)

=13

r 1 =10

oX:

Test Two

y

Base
(0.0)

r 1 = 10 f 2 = 13

(h.k)
(23,0)

---­

Test Three

A2.__ --- _
., .. '

(h,k)
(-7,16)

r., = 13

Circle 1

Al

•

Base
(0,0)

	Mapping Robotic Movement to a Three-Dimensional Coordinate System
	Recommended Citation

	tmp.1222379564.pdf.LRqeR

