
Illinois Wesleyan University

Digital Commons @ IWU Digital Commons @ IWU

Honors Projects Computer Science

4-26-1999

Designing an Integrated Environment for Artificial Intelligence Designing an Integrated Environment for Artificial Intelligence

Andrew B. Ritger '99
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/cs_honproj

 Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation
Ritger '99, Andrew B., "Designing an Integrated Environment for Artificial Intelligence"
(1999). Honors Projects. 11.
https://digitalcommons.iwu.edu/cs_honproj/11

This Article is protected by copyright and/or related rights. It has been brought to you by Digital
Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any
way that is permitted by the copyright and related rights legislation that applies to your use. For
other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights
are indicated by a Creative Commons license in the record and/ or on the work itself. This material
has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information,
please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.

http://www.iwu.edu/
http://www.iwu.edu/
https://digitalcommons.iwu.edu/
https://digitalcommons.iwu.edu/cs_honproj
https://digitalcommons.iwu.edu/cs
https://digitalcommons.iwu.edu/cs_honproj?utm_source=digitalcommons.iwu.edu%2Fcs_honproj%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.iwu.edu%2Fcs_honproj%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.iwu.edu%2Fcs_honproj%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.iwu.edu/cs_honproj/11?utm_source=digitalcommons.iwu.edu%2Fcs_honproj%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@iwu.edu

•

Designing an Integrated Environment for Artificial

Intelligence

Andrew B. Ritger and Dr. Lionel R. Shapiro

Department of Computer Science and Mathematics

Illinois Wesleyan University

April 26, 1999

Contents

1 Motivations 1

2 The Requirements of an Integrated Environment for

Artificial Intelligence 1

3 The Operating System Analogy 2

4 The SHELLEY Integrated Environment (SIE) 3

4.1 The Agent/Administrator/Device Model. 3

4.1.1 Intelligent Agents. 4

4.1.2 Devices Modules . . . 4

4.1.3 The Administrator .. 4

4.2 Agent Ownership of Devices. 4

4.3 The Flow of SIE 6

4.4 The device_list File 7

4.5 Network Protocols and the Details of Inter-Module Communication in SIE . 8

4.5.1 Choice of Communication Medium .. 8

4.5.2 Defining a Communications Protocol . 8

5 How SIE Can Support Different Paradigms of Artificial Intelligence 10

6 An Example of SIE Applied: Identifying a User 11

7 Future Work 12

8 Conclusion 13

Appendix A sie_protocoI.h 15

Appendix B administrator.c 22

Appendix C shelley-sockets.h 32

Appendix D shelley_sockets.c 34

Appendix E frame_grabber _protocol.h 38

Appendix F frame_grabber .c 41

Appendix G Frame_Grabber.H 51

Appendix H Frame_Grabber.C 53

Appendix I neuraLnet_protocol.h 58

Appendix J neuraLnet.c 60

Appendix K NeuraLNet.H 64

Appendix L NeuraLNet.C 66

Appendix M agent.C 71

Appendix N Makefile 79

References 81

Acknowledgements 82

List of Figures

1 Process/Peripheral Communication Via the Kernel . 2

2 The SIE Agent/Administrator/Device Model . 4

3 The Layers of Inter-Module Communication Protocol used in SIE 8

11

Abstract

The SHELLEY RESEARCH GROUP (part of the Illinois Wesleyan Intelligence Network on
Knowledge - IWINK) has been in existence for several years, and has benefited immensely from
various student contributors who have added such components as robotic arm control, cross
platform networking, an artificially intelligent tic-tac-toe player, and an interactive teaching
tool demonstrating the functionality of artificial neural networks. What is lacking, however,
amidst these undergraduate contributions to the SHELLEY Project, is an effective means of
integrating existing components into a single cohesive functional unit, let alone any easy means
of making further contributions within a simple unified context.

The focus of this research has been to design an all-encompassing structure for incorporating
the different components of SHELLEY (both existing and future). Because we must operate under
the assumption that we cannot predict what future contributions will be made to SHELLEY, nor
how these components will be used, this integrated environment must be both flexible and
expandable in such a way as to not confine future projects.

The approach to artificial intelligence that the SHELLEY RESEARCH GROUP has taken relies
heavily upon interaction with the surrounding environment. For this reason, many of the ex­
isting components are devices for receiving input from SHELLEY'S surroundings (such as vision
cameras) or acting upon the surroundings (such as robotic arms). Thus, we can assume that
future contributions will fall under two primary categories: additional devices (either cognitive,
modules, such as neural networks, or interactive devices, such as cameras or arms), or intelli­
gent agents (such as tic-tac-toe players, or navigation systems) that will use these devices. The
environment must then be flexible in two manners - allowing for the addition of further devices,
and providing a task management mechanism for accessing these devices. The solution is to use
a modern operating system model where the devices that SHELLEY uses to interact with her
environment correspond to computer hardware devices and their drivers, the intelligent agents
are analogous to processes that run on the system and use the devices, and the administrator,
which coordinates these agents and their usage of devices, can be compared to the kernel of the
modern operating system.

iii

•

1	 Motivations

The primary purpose of this research has been to ease the implementation process for future
students making contributions to the SHELLEY Project. t It is currently difficult for students to make
contributions because each external robotic device has its own unique communication protocol.
Additionally, even in the case where there exists a program that communicates with an external
device (for example, a robotic arm), there is no system in place to facilitate other programs reusing
that same portion of program code. Finally, a third obstacle hindering progress is intimidation felt
by potential contributors. Students often examine the prospects of implementing a task for SHELLEY
such as playing tic-tac-toe or chess, but may feel that the project is too daunting because "that's
so complicated" or "I don't know anything about robotics." By providing a simple interface to an
all-encompassing structure for incorporating the different components of SHELLEY, these difficulties
can be alleviated.

2	 The Requirements of an Integrated Environment for
Artificial Intelligence

An agent is an entity that perceives characteristics of its environment and acts upon that environ­
ment. An intelligent agent acts upon its environment in ways humans consider appropriate to the
characteristics that the agent perceives. It uses its sensors - means of perceiving its surroundings ­
to collect information that it then uses to make intelligent decisions. The agent then acts upon its
surroundings through its effectors [1]. It is in this decision making, or mapping of input from sensors
to output actions through the effectors, that the intelligence of the agent lies. This mechanism for
agent intelligence, however, is not the focus of this research; there are many different approaches
and techniques for making an agent intelligent, which encompasses several major paradigms and
philosophies. It is also not the place of this research to make a judgment as to which paradigm
is most appropriate for SHELLEY, but rather to design an environment that can facilitate different
approaches to building an intelligent agent so that future students can explore the many options
without feeling confined or restrained to one predefined paradigm.

The distinction can be made between pure software agents, whose world consists entirely of
entities internal to the computer upon which the agent resides (soft agents), and agents whose
world extends beyond the confines of a computer and encompasses the physical parameters of its
surroundings [1]. In the former, the sensors and effectors are much more easily implemented, while
the latter requires special hardware that introduces all the complications already discussed (see
Section 1 Motivations).

SHELLEY is a robotic entity - her environment is the physical world. Therefore, while some
tasks may be handled sufficiently through soft agents, others must be addressed by agents who
make use of SHELLEY'S special hardware peripherals in order to interact with the "real world" [2].

tThe SHELLEY Project takes its name from Frankenstein author Mary Shelley

1

3

In light of the aforementioned difficulties associated with interfacing to these peripherals, we require
some mechanism through which agents can easily access specialized external hardware in order to
accomplish their tasks. Thus, SHELLEY necessitates an integrated environment that can provide an
effective and flexible system for integrating both existing and future peripherals such that these
devices can be shared and adequately managed. Additionally, this integrated environment must
provide a simple method of programming with and using these peripherals. Ideally, this can exist
in the form of function calls which can be made directly from within researchers' program code;
however, the function calls must be structured such that they can easily accommodate new and
different types of devices, as well as be used from anyone of numerous programming languages.

The Operating System Analogy

In many ways the integrated environment that SHELLEY requires is analogous to a modern
operating system. An operating system serves as an interface between the user-level software on a
computer and the computer's hardware [3J. It has two primary tasks: provide convenience for the
programs running on the computer and do so efficiently. The modern operating system can also
be considered a control program that manages system resources (memory and processing time, as
well as system Input/Output devices) by resolving conflicting resource requests and guaranteeing
effective use of these limited resources. The operating system also controls application processes
and ensures that the system is properly used by these processes [3].

One model of operating system is the one program running at all times on the computer ­
generally called the kernel. Following this, all other processes are applications that provide some
functionality, either for the kernel, or for the user. It is the kernel that processes all system calls,
handles all sharing of central processing unit (CPU) time and random access memory (RAM)
between competing processes, and performs the handling of peripherals. To access peripherals,
processes must do so through the kernel (see Figure 1) [4J. Another crucial part of an operating
system is the capacity for multiprocess scheduling and management - a significant aspect of the
modern operating system, and one that is crucial for our use of the model as an environment for
artificial intelligence.

Given this formal model of an operating system, it can be used as a point of departure to
construct our own model of an integrated environment for artificial intelligence. There are several
differences, though, which merit attention before proceeding. The first of these differences is that
when addressing the potential paradox of convenience and efficiency, operating system design has
historically favored efficiency over convenience when the two have contradicted each other. In our
model, however, though we emphasize both, convenience receives precedence when conflicts require
resolution. As stated earlier, the primary goal of this work is to make more convenient the work of
future users of this environment.

The second major difference is actually an issue of implementation that will be addressed later.
For now, let it suffice to say that we employ a client-server model to facilitate communication,
rather than use a method similar to that of system calls to the kernel. In a client-server model,
we have two classifications of programs: clients, which make requests, and servers, which service
the clients [5]. The client-server model may not be quite as efficient, but it certainly increases
the convenience of our model. Thus, we see the influence of our favoritism for convenience over

2

888

\\/

(Kernel)

/\

Peripheral \ Peripheral I \Peripheral

Figure 1: PROCESS/PERIPHERAL COMMUNICATION VIA THE KERNEL [4]

efficiency. The client-server model allows for network-ability, easier implementation, and allows
this integrated environment to be built on top of, not replace, the existing operating system.

4 The SHELLEY Integrated Environment (SIE)

The operating system model discussed above (see Figure 1) offers the additional benefit of
being completely modular: distinct functional units are separated into disjoint and independent
components. These components then can be used to construct more complex structures, which
in turn can be used as the components to build even more complex and powerful entities. This
modularity provides a very simple and convenient way for developers to construct powerful systems
by using the work of previous developers as building blocks. Additional advantages are that this
form is very flexible and expandable, and that it facilitates program code reuse. It is with this
model in mind that we have designed the SHELLEY INTEGRATED ENVIRONMENT (SIE).

4.1 The Agent/Administrator/Device Model

We cannot, however, have complete freedom in the modularity of SIE; there must be some
constraints to define the relationship between these modules. Thus, we employ the operating
system model as the basis for a similar structure to govern SIE: the agent/administrator/device
model.

In this modular all-encompassing structure, there are three primary types of components: agents,
which are programs for a specific task, devices which the agents use to accomplish these tasks, and
the administrator, which intercedes between the other two modules, facilitating communication and
regulating agent access to devices.

3

-

4.1.1 Intelligent Agents

As discussed earlier, intelligent agents are objects designed for a specific artificial intelligence
task, such as navigating through a maze, playing chess, or performing speech recognition. Thus,
to build an artificially intelligent entity, multiple agents would be run to accomplish each different
behavior desired. In SIE, the intelligent agent is considered to be a software application written
to accomplish a particular goal, following the general definition presented earlier of an agent as a
mechanism mapping input from sensors to behavior through effectors. Agents in SIE are analogous
to application processes in the operating system model.

4.1.2 Devices Modules

The agents, however, should not have to know the details of the resources (sensors and effectors)
that they necessarily must use. Therefore, we call upon the device module to act as an interface
between the agent requests and the physical robotic hardware. Device modules within the context
of SIE encapsulate individual functional units. They usually control external hardware peripherals
such as arms and cameras, though a device can just as easily contain a cognitive module such as
an artificial neural network. Through device modules we are able to extract the implementation
details of these functional units from the role of the agent programmer. These device modules
are equivalent to an operating system's device drivers in that both the SIE device modules and
the operating system's device drivers are software applications which facilitate the use of specific
hardware by other software applications.

4.1.3 The Administrator

The challenge remaining is to integrate the agents and devices into a cohesive whole, allowing
intelligent agents to use devices while still maintaining a relative degree of simplicity for the in­
dividual implementation of an agent. The solution is the administrator module which serves, as a
mediator between the agents and the devices that the agents use, much like the operating system
kernel serves as a mediator between software applications and the hardware they must use. The
administrator resolves all conflicts between multiple agents trying to control the same device. For
example, if multiple agents require access to a robotic arm, but wish to move the arm in differing
directions, it is up to the administrator to resolve this dispute. When an agent requires data from
a device, the agent sends the request to the administrator who passes the request on to the device
if the administrator deems the request admissible. When the device sends back data, the data is
streamed to the administrator who channels it to the appropriate agent. In this way the complica­
tions of resource management are extracted from the agents and devices, and handled only by the
administrator (see Figure 2).

4.2 Agent Ownership of Devices

Some devices such as one which interfaces with motor-driven wheels should only be controlled
by one agent at anyone time. Other devices such as one which acquires single frames of video
from a camera may be used by multiple agents, but only one agent should have permission to make
status changes to the device, for example, change the resolution or filtering mode in the case of
a video frame acquisition device module. Given these stipulations, the administrator employs a
mechanism for read/write permissions similar to that of a Unix operating system. If a device is
designated as "sharable" then it can have an unlimited number of agents using it, though it can
have at most one owner with full read/write permission at anyone time (ownership equals write

4

8 8

\/

Administrator

/\

(Device Module) (Device Module)

FIGURE 2: THE SIE AGENT/ADMINISTRATOR/DEVICE MODEL

permission); all other agents must use the device in read-only mode. The requests of a device which
are considered read-only and those which require write permission must be explicitly made known
to the administrator through a . conf file for each device (see Section 4.4 The device_list File).

This permission system introduces the additional complexity of determining which agent owns
(has write permission for) a device. The administrator grants owner privileges to an agent for
a specific device if the agent requests the device and no other currently connected agents own
the device - either no other connected agents have requested the device, and therefore it is not
yet connected, or other agent(s) are using the device, but the previous owner has relinquished
ownership and no other agent in the interim has requested ownership.

Devices may also be specified to allow multiple instances. This mostly like would occur with
cognitive modules, or at least devices which operate completely at a software level and do not
interface with external peripherals. If an agent requests a device of this type, then each request
will result in a new device of that type to be run. Therefore, an agent who requests a device of this
type is guaranteed to be granted owner permissions because it is the only agent using that instance
of the device.

To further facilitate sharing of devices and inter-agent cooperation, an agent can query the current
ownership status of a device and receive a response of either (a) the querying agent owns the device,
(b) another agent owns the device, (c) no agent owns the device, or (d) the device is not known.
The agent can also make a request to the administrator to claim ownership of a device, receiving
either a confirmation or rejection. In the case of a rejection, the administrator sets a flag which
indicates that there are agents without ownership who desire ownership. Agents can query the
status of this flag to know if other agents have been requesting ownership. Additionally, the agent

5

•

can relinquish ownership of a device. Through this system, multiple agents can effectively share a
device by yielding ownership when they are able to operate in read-only mode, and by requesting
ownership only when it is absolutely necessary to have write permission. Of course, handling of
ownership issues is not necessary for an agent implementation; if an agent is not intended for use
alongside other agents, then behaving in a "device-greedy" manner is completely acceptable.

4.3 The Flow of SIE

Just as the kernel runs the entire time the operating system is running on a computer, our
administrator module runs as a background process whenever we are using SIE. If no intelligent
agents are running, then the administrator simply waits, listening for agents. When an agent is
run, it connects to the administrator, informing it of what devices are needed. After each device
request, the agent listens for a response from the administrator, who processes the device request
and makes one of the following responses if an error occurs:

•	 The requested device is currently in use by another agent, and the device is not sharable. The
administrator gives the agent the choice of either exiting or continuing without the device.

•	 The requested device is currently in use by another agent, but the device is sharable. Thus,
the agent can access the device, but will not have ownership permissions. The administrator
gives the agent the choice of either exiting or continuing without ownership of the device.

•	 The requested device is unknown to the administrator. The administrator gives the agent
the choice of either exiting or continuing without the device.

If a device is successfully connected to the administrator with the requesting agent as owner, then
the administrator sends a confirmation to the agent. After each confirmation by the administrator
(or acceptance of restrictions by the agent) the administrator sends the agent a unique identification
number which the agent and administrator then use to refer to the device in all future communi­
cations. Note that this device identification number is not the same as the identification number
listed in the device~ist file. This identification number serves the purpose of allowing the agent
and administrator to refer to a specific device, distinguishing between instances of the same device
type. If an instance of a device is shared between multiple agents, then the same number is used
by all agents to refer to this device. For example, if there is a video camera device module, an
agent may require two instances of this module (one for each of SHELLEY's two cameras). Thus
each instance of the module would be referred to by a different identification number so that the
agent and administrator can distinguish between the two. Also, if multiple agents are sharing the
same video camera module, then both agents use the same number to refer to the same device.

Such different situations may appear to make initialization of an agent overly complicated, but an
agent could be written very simply by connecting to the administrator, asking for certain devices,
and immediately failing if confirmation is not received. Depending on the context in which this
agent will be run, this approach may be sufficient. However, in cases where the programmer wishes
to maximize the stability of the agent and build support for inter-agent cooperation, handling of
the above situations is necessary, along with the ownership issues discussed previously.

When an agent disconnects from the administrator, any devices used exclusively by that agent
are also disconnected by the administrator. If the device is being used by other agents, then the
device will remain until all agents accessing it disconnect.

6

•

4.4 The device_list File

When the administrator is started, it reads a device~ist file that lists all the device modules
that will be supported by the administrator. The device~ist file must adhere to the following
syntax: lines that begin with white space or pound signs ("#") will be ignored; lines which define
a device must have the following information in order (separated by white space):

•	 A positive integer, to be used as a unique identification number for the device. This number
is used both internally by the administrator and by agents referring to the device at time of
request.

•	 The device executable name (with full path).

•	 The host computer on which the device should be run. This currently has no effect - all
device modules are run on the host of the administrator (see Section 7 Future Work for a
discussion of running devices on remote computers).

•	 Either share or no-share to designate if the device can be shared by multiple agents.

•	 An integer to designate the maximum number of agents which can share the device. If the
number is 0, then there is no fixed maximum. If the device is designated as not shareable,
then this value must still be here, but it serves no functional purpose.

•	 Either multiple or no-multiple to designate if the device can have only one instance or
multiple instances.

•	 An integer to designate the maximum number of instances which can exist for that device. If
the number is 0, then there is no fixed maximum. If the device is designated as no-multiple,
then this value must still be here, though it is meaningless. '

Note that multiple overrides share; if a device is marked to be both multiple and share, a
separate instance of the device will be created at each request - the device will never be shared
until the maximum number of instances for that device is achieved, at which point the device will
be shared.

Below is a sample device_list file. The lines with pound signs are comments. Each other
line specifies a device by executable name and unique id number by which both administrator and
agents will refer to the device.

#	 Andy Ritger

#	 4-12-99

#	 Research Honors

#	 sample device list file

5 /opt/local/shelley/devices/frame_grabber localhost share 0 no-multiple 0

1 /opt/local/shelley/devices/neural_net localhost no-share 0 multiple 0

17 /export/home/aritger/temp/mobot_wheels localhost no-share 0 no-multiple 0

7

•

The administrator also requires a file associated with the device in the same directory as the exe­
cutable called <executable name>. conf (for example: frame_grabber. conf or neural...net. conf).
These . conf files specify which device requests, if any, are considered to require write permission. If
the administrator cannot find the file, it will produce a warning and proceed under the assumption
that all requests require ownership to be performed.

4.5 Network Protocols and the Details of Inter-Module Communication in SIE

4.5.1 Choice of Communication Medium

The mechanism for inter-module communication within SIE is the sockets Application Program­
mer-'s Interface (API), following a client-server model where the administrator functions as the
server, and the agents and devices function as clients. Sockets were chosen over other forms of
interprocess communication (IPC), such as shared memory, pipes, and signals [6], because they
are built on top of TCPlIP, and therefore facilitate the possibility of networking and distributing
module execution over the different computers that comprise SHELLEY. t Sockets are a sequenced,
reliable, fast, bidirectional means of interprocess communication through variable length streams
[4]. The sockets are of type SOCK_STREAM and domain ALINET, which allows the client-server to
connect and communicate anywhere on the Internet [7].

To ease future implementation, several C wrapper functions are provided for simple socket cre­
ation and use (shelley_sockets.h and shelley_sockets. c; see Appendix C and Appendix D,
respectively). Future contributors are not bound to use the SHELLEy....sOCKETS mini-library, but
the basic facilities are provided and a complete - though rudimentary - client-server structure can
be built solely with SHELLEy....sOCKETS function calls. Figure 3 gives a detailed chart of the layers
of protocol used in SIE.

4.5.2 Defining a Communications Protocol

In his 1997 paper, Douglas Gage discusses the obstacles he has encountered in networking mobile
robot systems [7]. His approach is primarily for defense purposes using a wireless RF network­
ing system, which differs from this project in that we do not have the same constraints of long
bandwidth-delay, error prone links, and of being mission critical. Nevertheless, his discussion on
communication protocol is still very much applicable. Gage defines protocol as: "a language used
by two entities to exchange information over a communications channel - it represents a shared
understanding or agreement of how each entity will interpret the signals it receives from the other"
[7]. To facilitate communication between the three types of modules in SIE, we must therefore
intricately define the signals that will be sent between the modules.

SIE's communications protocol is as follows: once the socket connection has been established, 1­
byte messages are sent across the connection, always initiating at the agent in agent-administrator
communication, and at the administrator in administrator-device module communication) This

tWhile SHELLEY currently consists of one Sun Ultra I Workstation and three Intel-based personal computers, there
is no reason why that could not change in the future, and we can maintain the flexibility emphasis in our design by
allowing for any number and type of computers.

tSIE employs its own defined types int8 (one byte, unsigned) and int32 (four bytes, unsigned) for all its commu­
nication. This is important for portability. If SIE is ported to a platform with a different sized integer (a different
number of bits), the only change which needs to occur is the definition of SIE's int8 and int32 [8]. The int8 and
int32 type definitions are in the sie_protocol.h file; see Appendix A.

8

--

Device Module
Wrappers (optional)

Individual Device

Module Protocols

SIE Protocol

I

shelley_sockets

(optional)

Sockets API

TCP/IP

------------.

Figure 3: THE LAYERS OF INTER-MoDULE COMMUNICATION PROTOCOL USED IN SIE

forces the condition that the administrator cannot directly broadcast information to agents; if
something changes at the administrator, such as another agent relinquishing device ownership,
agents can only find out this information by explicitly requesting it. Similarly, at the connection
between the administrator and a device, state changes at the device can only be known by the
administrator if it explicitly queries the device. This may at first appear confining, but it greatly
simplifies the protocol between any two devices, because both will always know which is expected
to send the next message.

When an agent connects to the administrator, there is a sequence of startup information passed
back and forth in the following format: the agent sends the AGENLCONNECT messaget , to which the
administrator then replies with the ADMIN-ACKNOWLEDGE-AGENLCONNECT message. Next, for each
device the agent requires, it sends AGENT...DEVICE..1l.EQUEST followed by an int32 integer which is the
device identification number specified in the file device_list. The administrator then responds
with ADMIN_CONFIRM...DEVICE..1l.EQUEST if the device was successfully connected, and owner privileges
granted to the requesting agent, otherwise, one of the following errors is sent by the administra­
tor: ADMIN...DEVI CE_UNKNOWN, ADMIN...DEVI CE-ALREADYJlWNED, or ADMIN...DEVICE-NOT..AVAILABLE. In
all three error cases the agent has the option of accepting the error (AGENT..ACCEPT) and the stipu­
lations which that implies (see Section 4.3 The Flow of SIE) or failing (AGENT...FAIL), in which
case there is no further communication between the administrator and the agent; the administrator
disconnects the agent and frees all resources used exclusively by that agent. After the administrator
has sent the ADMIN_CONFIRM...DEVICE..1l.EQUEST, the administrator also sends a 32-bit integer which
is a unique number which the agent should then use whenever referring to the device. The number
is also sent after the agent sends the AGENT..ACCEPT message. When all devices have been requested
and either confirmed, or errors accepted, the agent sends AGENT...DEVICE..1l.EQUEST...DONE, indicating
the end of startup communication between the agent and the administrator.

t All messages are declared as constants through C #define statements in the sie_protocol.h header file, see
Appendix A.

9

-
When a device is requested, the administrator uses the device id number given by the agent to

lookup the device executable (this information is stored in the device list file) and run it, following
the convention "<device executable>u<computer hosting the administrator>u<port number on
which the administrator is listening for devices>." For example:

/opt/local/shelley/devices/frame_grabber localhost 4096

The administrator then waits for the device to connect to it, sending an acknowledgement
upon connection, ADMIN...QUERYJ)EVICE, to which the device responds with either DEVICE~EADYor
DEVICE...FAILED if the device module experienced some internal error and was not able to acquire all
its needed resources. On a DEVICE...FAILED, the administrator sends an ADMINJ)ISCONNECTJ)EVICE
message to the device allowing it to exit cleanly, and informs the requesting agent that the device
is unavailable.

After these initial exchanges of startup information between agents and the administrator, and
devices and the administrator, the specific protocol for a device must be explicitly defined for every
device type. The administrator examines the device's . conf file to know which device requests
require write permissions (requests not listed in the . conf file are assumed to only require read
permission). However, beyond knowledge of what requests can only be issued by the owner, the
administrator does not need to know any more specifics of the device protocol, and merely channels
allowable requests through from agent to intended device, and from device to appropriate agent.

For an agent to send a command to a device, the agent sends the message AGENT-SENDJ)EVICE
followed by two int32 numbers: the unique identifying integer to specify the device, and the length
(in bytes) of what is being sent to the device. There is the further stipulation that the first byte of
the message for the device must be the request code. If the agent is not owner, the administrator
compares this request with the requests listed in the . conf file for the device in question; and
determines if the message can be sent to the device. If the administrator determines that the
message can be sent to the device, the message (stripped of the AGENT-SENDJ)EVICE, the int32
device id number, and the int32 message length). The administrator also notes which agent sent
the message, so that when the device responds, the message can be channelled to the correct agent.
The two requirements we place on device protocol in 8m are: (1) devices must always send some
response back after receiving a request, and (2) the device must prepend this response with an
int32 indicating the size (in bytes) of the response.

Finally, the agent can send the AGENTJ)ISCONNECT message which tells the administrator that the
agent is quitting. At this point the administrator assumes that it will receive no more communica­
tion from the agent, and frees any resources that had been allocated for the agent. If the disconnect­
ing agent is the only agent using any devices, those devices are sent the ADMINJ)ISCONNECTJ)EVICE
message.

How SIE Can Support Different Paradigms of Artificial Intelli­
gence

The agent module is defined no further than the communication protocols through which an
agent talks to devices in order to sense and react to its surroundings. Thus, flexibility is built into
the foundation of the 8m structure, allowing support for any approach to the agent design. The

10

5

6

classical approach to robotics and artificial intelligence is to construct an internal model of the
world upon which we have our agents make decisions. All sensory inputs are gathered together and
information conflicts are resolved to construct a consistent world view [9]. The advantage to this
approach is that all information about the world is centralized and there is one single entity which
is fed all the information and can therefore make the most complete and well-informed decision
about how to react. This paradigm is very well supported by our integrated environment. The
simplest implementation would be to have a single agent that requested from the administrator all
the necessary devices to build a world model. The agent could then make calls to all the devices
to request data, receive that data, construct a model of the world, and make a decision about how
to behave.

Rodney Brooks, of the MIT Artificial Intelligence Laboratory, however, condemns this traditional
approach because it is slow (computationally intensive to build a world model) and large (much
memory is required to store the internal model). Brooks instead advocates a subsumption archi­
tecture wherein the decisions are not made by a single agent, but is distributed over an organized
hierarchy of behavior modules that directly map perception to action [10]. These separate behavior
modules do not directly communicate with each other in making decisions, but rather inhibit other
modules when they are active. For example, there may be a behavior that tells a mobile robot to
continuously move forward, but there may be another behavior that tells the robot to stop if there
is an obstacle in its path. If, in our hierarchy, we defined that the stopping behavior inhibits the
forward behavior, our robot will travel forward (the stopping behavior has no reason to be active,
and therefore lies dormant and does not inhibit the forward behavior) until the robot encounters
an obstacle. When an obstacle is encountered, the stopping behavior is made active, which inhibits
the forward behavior - the robot comes to a stop. By defining a hierarchy of behaviors and by
defining how these behaviors interact and inhibit each other, we can construct a system that does
not need a central intelligence, but can behaved based on a series of smaller intelligences. SIE can
easily support this approach to designing intelligent agents by building a separate agent for' each
"behavior module" and having them access the needed devices through the administrator. Agents­
in this case functioning as behavioral modules - can inhibit each other in the way Brooks prescribes
using the SHELLEy...sOCKETS mini-library to produce direct inter-agent communication.

An Example of SIE Applied: Identifying a User

A simple example of SIE in use is to address the task of recognizing the person sitting at SHEL­
LEY's console. The task is accomplished by constructing one agent that accesses two devices: a
frame grabber module that upon request returns a frame of video from the Sun video cameras used
by SHELLEY, and an artificial neural network module that encapsulates all the functionality and
data structures of a neural network, complete with facilities for training using the backpropogation
algorithm [ll]. This presents an example of a device module which does not interface with any
external physical hardware. Instead, the artificial neural network device module provides a com­
pletely self-contained functional unit. It is still valid, however, to consider this as a device module
because all any device module does is provide some function which should be separate and distinct
from the role of the agent.

The user-identifier agent connects to the administrator, and requests both the frame grabber
and artificial neural network devices, failing if owner permission cannot be granted for both. After
initialization, the agent presents to the current user a menu with options: "identify user," "cap­

11

7

•

ture frames to pgm," "train," or "quit." Through this user interface, we can acquire a series of
video frames and save them as pgm image files, use the image files to train the network, and then
test the network with live video from one of SHELLEY'S Sun video cameras. This functionality
demonstrates the use of multiple devices by a single agent, all communicating through the admin­
istrator. The specifics of the frame grabber and neural network device protocols can be found in
frame.-grabber-protocol.h (see Appendix E) and neuralJlet_protocol.h (see Appendix I),
respectively.

This example demonstrates several key features of SIE. First, SIE's flexibility is exhibited in the
implementation styles employed. While the administrator is implemented in strict C (primarily
to support multi-threading), the user-identifier agent is implemented in C++. In reality, the
devices and agents can be individually implemented in any language with bindings to the sockets
API. As long as the communications protocol is followed, one module does not need to know the
implementation details of any other module.

Another example of SIE's abstraction of implementation details is the way in which external
hardware can be easily changed without disrupting SIE. If the current Sun video cameras were
replaced by different peripherals for visual perception, then all that would be needed would be a
new frame grabber module that used the same communications protocol for the previously existing
agents to still be useful. This system allows agents to not be concerned with the specifics of the
neural network itself (see administrator. c in Appendix B and agent. C in Appendix M).

Finally, the largest single benefit of SIE is the ease of implementation of the user-identifier
agent. Simplicity was further increased by the development of C++ wrapper classes to encapsulate
the communication with each device; when the agent creates an instance of each wrapper class,
the constructor handles the startup communication with the administrator. The agent then calls
methods of the classes to send all the requests to the devices (via the administrator) and collect
the resulting data (see Frame_Grabber. H in Appendix G, Frame_Grabber. C in Appendix H,
NeuraLNet . H in Appendix K, and NeuraLNet. C in Appendix L). These classes are declared
and defined in separate files from the user-identifier so that they can be used by other agents.
Of course, the implementation of future agents that use these same devices need not employ the
wrapper classes, and can rely directly on the protocol header files.

Future Work

This research thus far has focused primarily on the design of (SIE), with selective implementa­
tion of key points to test theories, verify strategies, and prove concepts. With the network and
communication protocols established, as well as the overall flow of SIE well defined, the next step
is implementation. The administrator module exists in skeletal form, and while the majority of the
central issues are addressed, the multiple agent support and write permission functionality, though
well defined, is yet to be implemented.

The following is a partial list of some additional future contributions which could be made to
SIE:

• Network-ability:	 Currently, agents can connect to the administrator if it is running on
the localhost, or if it is running on any other computer networked to the host of the agent.

12

•

However, because the administrator must create the device processes, there is currently no
means for the devices to be run on a computer other than the one upon which the adminis­
trator is being run. Perhaps an investigation of an RPC (remote procedure call) package may
provide a solution [6]. An alternative answer could be to not have devices get executed by
the administrator when they are needed, but rather run them explicitly and connect them to
the administrator at administrator startup, leaving them connected for the entire duration of
SIE. In this way, the user could explicitly run the device module from any networked com­
puter, though an obvious disadvantage would be that it would then become a responsibility
of the user to ensure that all needed devices were running and connected. Or, perhaps a
separate administrator could be run on each computer of a networked cluster, so that when
one administrator needed to access resources on another computer, it could be done through
inter-administrator cooperation. The advantages to distributing SIE over a networked cluster
are many, as are the issues involved which would require addressing.

•	 Varying Agent Priorities: A priority scheme for agent ownership of devices maybe useful
for SIE in situations where many agents are being run concurrently. This however, creates
the added complexity of communicating to a "less important" agent that a more important
agent has come along and ruthlessly usurped device ownership.

•	 Midprocess Device Requests: The present design of SIE forces all device requests by
an agent to occur when the agent initially connects to the administrator. A potentially very
useful modification could be a design for agents to request devices anytime during their session
with the administrator, and not only upon connection.

•	 Device "Short-circuiting:" In the case where an agent essentially streams the data coming
in from one device to another device (sending image data from a video frame grabber to an
artificial neural network, for example) there would be a performance increase gained if the
agent could tell the administrator to channel the data to a specific device rather than send it
back to the agent. Very quickly, complications arise when considering this scheme due to the
implicit need this creates for differing devices to have compatible communication protocols,
which is otherwise not an issue in the current design of SIE.

•	 Development of Agents and Devices: Perhaps the most obvious contribution to be made
to SIE is the development of both agents and devices. Ideally, device modules can be created,
along with a defined protocol for accessing their functionality, and then saved - building a
library of devices which can then be used by agents as they are created. Most likely, device
module development will be driven by necessity - when an agent requires access either to
a peripheral or some distinct functional unit for which there is no current device module
written. It is hoped that the design philosophy of building separate, reusable modules will be
followed to maximize code reuse and long-term productivity.

Conclusion

The SHELLEY Integrated Environment (SIE) is designed primarily with the goal of easing im­
plementation of future projects by providing an easy means for accessing the devices which allow
SHELLEY to interact with her surroundings. The design emphasizes flexibility and expandability, as
well as simple code reuse in the form of separate modules. The agent/administrator/device model
upon which SIE is built allows the implementors of agents to not be concerned with the inner

13

8

-
workings of accessing specialized hardware - this is localized to specific device modules. Inter­
module communication is accomplished using the sockets API, which offers the future opportunity
to distribute SIE over a network of computers. Multiple agents can be run in conjunction, building
an integrated system of behaviors. It is the administrator's responsibility to regulate and manage
agent access to devices, much like in the modern operating system, it is the kernel's responsibility
to regulate and manage processes and their access to system resources. Finally, the specifics of how
SHELLEY maps sensory input to behavioral output is encapsulated in the agents, thus SIE serves
only to facilitate and does not confine how future researchers approach the problem of building an
artificially intelligent entity.

14

Appendix A sie_protocol.ht

•

1 /**
2 Andy Ritger
3 Research Honors
4 4-26-99
5
6 The constants which comprise the SIE protocol follow the simple naming
7 convention where the first word is either AGENT, DEVICE, or ADMIN to
8 designate who is sending the message, followed by an underscore separated
9 description of the message.
10
11 Note that all constants are sent across sockets as type int8.
12
13 ***/
14
15
16
17 #ifndef SIE_PROTOCOL _
18 #define SIE_PROTOCOL _
19
20
21
22 /**
23 When porting SIE to other platforms, edit these typedefs as needed so that
24 byte8 is an unsigned 8-bit value, and int32 is an unsigned 32 bit value.
25 ***/
26

27 typedef unsigned char int8;

28 typedef unsigned int int32;

29

30
31
32 /**
33 The AGENT_CONNECT message is sent by the agent after a socket connection
34 has been established. The agent then awaits confirmation from the
35 administrator.
36 ***/
37
38 #define AGENT_CONNECT 32

39

40
41
42 /**

t All of the source code listed in these appendices can be found at www.iwu.edu/- shelley/sie

15

•

43 The ADMIN_ACKNOWLEDGE_AGENT_CONNECT is sent by the administrator to an
44 agent after the agent has sent the AGENT_CONNECT message. This is simply
45 a means of "handshaking" so that one can verify the other's existence.

46 ***1
41
48 #define ADMIN_ACKNOWLEDGE_AGENT_CONNECT 33
49
50
51
52 1**
53 The AGENT_DEVICE_REQUEST message is sent by the agent to the administrator
54 after the ADMIN_ACKNOWLEDGE_AGENT_CONNECT is received. The
55 AGENT_DEVICE_REQUEST is followed by an int32 which specifies the id number
56 for a device as given in the file device_list.

51 ***1
58
59 #define AGENT_DEVICE_REQUEST 34
60
61
62
63 1**
64 The ADMIN_CONFIRM_DEVICE_REQUEST is sent by the administrator to the agent
65 to confirm that the requested device has been verified and the agent granted
66 ownership. This message is followed by an int32 which is the unique
61 identifying number of the specific instance of the device module, which
68 the agent and administrator will use for all future communication regarding
69 the device module.

10 ***1
11
12 #define ADMIN_CONFIRM_DEVICE_REQUEST 35
13
14
15
16 1**
11 The ADMIN_DEVICE_UNKNOWN is sent by the administrator to the agent when
18 the requested device id is unknown to the administrator (the given id
19 number is not listed in the device_list configuration file. This message
80 is followed by an int32 which is the unique identifying number of the
81 specific instance of the device module, which the agent and administrator
82 will use for all future communication regarding the device module. This
83 number is not really needed, but is given to conform with the conventions
84 followed for other other possible responses made by the administrator
85 regarding device module requests.

86 ***1
81
88 #define ADMIN_DEVICE_UNKNOWN 36
89
90

16

--.

91
92 /**
93 The ADMIN_DEVICE_ALREADY_OWNED message is sent by the administrator to the
94 agent in response to a device module request if the device module exists,
95 but is already owned by another agent (thus write permission cannot be
96 granted to the requesting agent). This message is followed by an int32
97 which is the unique identifying number of the specific instance of the
98 device module, which the agent and administrator will use for all future
99 communication regarding the device module.
100 ***/
101
102 #define ADMIN_DEVICE_ALREADY_OWNED 37
103
104
105
106 /**
107 The ADMIN_DEVICE_NOT_AVAILABLE message is sent by the administrator to the
108 agent in response to a device module request if the device module is known
109 by the administrator, but it is not available -- either the maximum number
110 of agents are already using it, or there was an error when the administrator
111 attempted to create the device. This message is followed by an int32 which
112 is the unique identifying number of the specific instance of the device
113 module, which the agent and administrator will use for all future
114 communication regarding the device module.
115 ***/
116
117 #define ADMIN_DEVICE_NOT_AVAILABLE 38
118
119
120
121 /**
122 The AGENT_ACCEPT message is sent by the agent to the administrator after
123 one of the above three error messages have been sent (ADMIN_DEVICE_UNKNOWN,
124 ADMIN_DEVICE_ALREADY_OWNED, or ADMIN_DEVICE_NOT_AVAILABLE) to specify
125 that the conditions imposed by the given error will be accepted and the
126 agent wishes to continue.
127 ***/

128

129 #define AGENT_ACCEPT 39

130
131
132
133 /**
134 The AGENT_FAIL message is sent by the agent to the administrator after
135 one of the above three error messages have been sent (ADMIN_DEVICE_UNKNOWN,
136 ADMIN_DEVICE_ALREADY_OWNED, or ADMIN_DEVICE_NOT_AVAILABLE) to specify
137 that the conditions imposed by the given error will not be accepted and the
138 agent wishes to fail without proceeding further. As soon as this message

17

•

139 is received, the administrator assumes that the agent is gone, and ignores
140 its existence.
141 ***/
142
143 #define AGENT_FAIL 40
144
145
146
147 /**
148 The AGENT_DEVICE_REQUEST_DONE message is send by the agent after it has
149 requested all necessary device modules and has dealt vith the administrator's
150 responses.
151 ***/
152
153 #define AGENT_DEVICE_REQUEST_DONE 41
1~

155
156
157 /**
158 The ADMIN_QUERY_DEVICE message is sent to the device by the administrator
159 after the device has connected to ensure that the device really is a device.
160 ***/
1~

162 #define ADMIN_QUERY_DEVICE 42

163

1~

165

166 /**

167 The DEVICE_READY message is sent by the device to the administrator in

168 response to the administrator's ADMIN_QUERY_DEVICE. The message indicates

169 that the device is ready to receive commands.

170 ***/

ln
172 #define DEVICE_READY 43
1~

1~
ln

176 /**

177 The DEVICE_FAILED message is sent by the device to the administrator in
178 response to the administrator's ADMIN_QUERY_DEVICE. The message indicates
179 that the device experienced some internal error and is not able to function.
180 The administrator assumes that the device module goes avay after this message
181 is sent
182 ***/

183

184 #define DEVICE_FAILED 44

185

186

18

•

187
188 /**
189 The ADMIN_DISCONNECT_DEVICE message is sent by the administrator to a
190 device module to tell the device that it is no longer needed and should
191 exit.
192 ***/
193
194 #define ADMIN_DISCONNECT_DEVICE 45
195
196
197
198 /**
199 The AGENT_QUERY_DEVICE_OWNERSHIP message is sent by an agent to the
200 administrator. The message is immediately followed by an int32 holding
201 the specific identification number of a device module. This is used
202 by an agent to query the ownership of a device module.
203 ***/
204
205 #define AGENT_QUERY_DEVICE_OWNERSHIP 46
206
207
208
209 /**
210 The ADMIN_THIS_AGENT_OWNS_DEVICE is sent by the administrator to an agent
211 is response to the agent's AGENT_QUERY_DEVICE_OWNERSHIP message. This
212 indicates that the requesting agent is owner of the device module in question
213 (the agent has write permission).
214 ***/
215
216 #define ADMIN_THIS_AGENT_OWNS_DEVICE 47
217
218
219
220 /**
221 The ADMIN_ANOTHER_AGENT_OWNS_DEVICE is sent by the administrator to an agent
222 is response to the agent's AGENT_QUERY_DEVICE_OWNERSHIP message. This
223 indicates that an agent other than the requesting agent is the the owner
224 of the device in question (thus the requesting agent only has read
225 permission).
226 ***/
227
228 #define ADMIN_ANOTHER_AGENT_OWNS_DEVICE 48
229
230
231
232 /**
233 The ADMIN_NO_AGENT_OWNS_DEVICE message is sent by the administrator to an
234 agent is response to the agent's AGENT_QUERY_DEVICE_OWNERSHIP message. This

19

..

235 indicates that no agent ovns the device in question (no agent has write
236 permission).
237 ***/
238
239 #define ADMIN_NO_AGENT_OWNS_DEVICE 49
~O

241
~2

243 /**
244 The AGENT_REQUEST_DEVICE_OWNERSHIP message is sent by an agent to the
245 administrator. The message is immediately followed by an int32 holding
246 the specific identification number of a device module. This is used
247 by an agent to request that it be made ovner of the device in question.
248 ***/
~9
250 #define AGENT_REQUEST_DEVICE_OWNERSHIP 50
251
252
253
254 /**
255 The ADMIN_GRANT_DEVICE_OWNERSHIP message is sent the administrator to
256 an agent in response to the agent's AGENT_REQUEST_DEVICE_OWNERSHIP
257 message. This indicates that the agent now is ovner (has write permission)
258 for the device module in question.
259 ***/
260
261 #define ADMIN_GRANT_DEVICE_OWNERSHIP 51

262

263

2~

265 /**
266 The ADMIN_DENY_DEVICE_OWNERSHIP message is sent by the administrator to
267 an agent in response to the agent's AGENT_REQUEST_DEVICE_OWNERSHIP message.
268 This indicates that the agent does not receive ovnership (given write
269 permission) for the device module in question.
270 ***/
2n
272 #define ADMIN_DENY_DEVICE_OWNERSHIP 52
2~

2~

2%
276 /**
277 The AGENT_SEND_DEVICE message is sent by an agent to the administrator to
278 indicate that what is following is a message for a device. It is followed
279 by two int32s; the first indicates the id number of the device to which
280 the message should be sent, and the second specifies the length of the
281 message to be sent to the device module.
282 ***/

20

II

283
284 #define AGENT_SEND_DEVICE 53
285
286
287
288 /**
289 The AGENT_DISCONNECT message is sent by an agent to the administrator to
290 indicate that the agent is done and is exiting. Upon receiving this message,
291 the administrator releases any resources used exclusively by the
292 disconnecting agent, and hereafter assumes that the agent no longer exists.
293 ***/
2~
295 #define AGENT_DISCONNECT 54
296
297
298
299 #endif

21

Appendix B administrator.c

•

1 /***
2 Andy Ritger
3 Research Honors

4-26-994
5
6 administrator.c
7
8 This is the administrator source code. The administrator is still in *VERY*
9 rudimentary form, but the basic functionality is here.
10
11 ***/

12

13

14

15 #include <stdlib.h>

16 #include <stdio.h>

17 #include <string.h>

18 #include <netinet/in.h>

19 #include <netdb.h>

20 #include <unistd.h>

21 #include <fcntl.h>

22 #include <ctype.h>

23 #include <sys/stat.h>

24 #include <sys/wait.h>

25 #include <sys/types.h>

26 #include <sys/socket.h>

27

28 #include "s ie_protocol.h"

29

30
31

32 /***

33 structures

34 ***/

35

36 typedef struct device_info

37 {

38 device_info *next; /* pointer so that we can have this in a linked list */

39 int dev_id; /* the device id as specified in the device_list file */

40 char *path; /* path and name of binary of device module */

41 char *bin; /* file name of binary */

42 char *host; /* host on which to run device module (not implemented)*/

43 int shared; /* 1 = device can be shared; 0 = not */

22

-
int multiple; /* 1 device can have multiple instances; 0 = not */44

45 };

46
41
48
49 /***
50 prototypes
51 ***/
52
53
54
55 /***
56 The function agent_listener () binds a socket, and listens for an agent
51 connecting on that socket. After this happens, we attempt to acquire
58 all the device modules requested by the connecting agent. Finally, we
59 sit in an loop and pass device commands from the agent to the appropriate
60 device, and then from the device back to the agent.
61 ***/
62
63 void agent_listener (int port_number);
64
65
66

61 /***

68 The connect_device () function is called for each device requested. A

69 child process is forked off to exec the device module program. We then

10 listen for the device to connect back to us.

11 ***/

12

13 int connect_device (int n);

14

15

16

11 /***

18 The read_device_Iist () function parses the device_list file, and stores

19 all the relevant information in a linked list.

80 ***/

81

82

83

84

85

86 /***

81 The function find_next_data () takes a file handler and moves the handler

88 past any whitespace or lines with pound signs ("#") so that next thing is

89 valid data.

90 ***/

91

23

•

92 void find_next_data (FILE *file);

93

94

95

96 /***

97 global variables -- need to be changed

98 ***/

99

100 device_info *device_list;

101 int the_socket;

102 sockaddr_in name;

103 int number_of_devices = 0;

104 int device_connections [10];

105

106

107

108 /***
109 main 0

110 ***/

111

112 int main (int argc, char **argv)

113 {

114 /* read the device_list file */
115
116 device_list = read_device_list ();
117
118 /* listen for agents trying to connect */
119
120 agent_listener (2048);
121
122 /* tell all connected devices to go away */
123
124 int8 send = ADMIN_DISCONNECT_DEVICE;
125 for (int i = 0; i < number_of_devices; i++)
126 write (device_connections [i], &send, sizeof (int8));
127
128 printf ("ADMINISTRATOR: done.\n");
129 exit (0);
130 } /* main () */
131
132
133
134 /***
135 agent_listener ()

136 ***/

137

138 void agent_listener (int port_number)

139 {

24

-
140 int *temp, response, i, n;
141 int ns, player_no;
142 int len, res;
143 char response2, *pname;
144 int8 received, answer;
145
146 /* create the socket */
147 the_socket = socket (AF_INET, SOCK_STREAM, 0);
148
149 /* set the port number */

150 name.sin_family = AF_INET;

151 name.sin_port = htons (port_number);

152 n = INADDR_ANY;

153 memcpy (&name.sin_addr, &n, sizeof (long));

154
155 /* enables reuse of the port number -- this is a very good thing */
156 temp = (int*) malloc (sizeof (int));

157 *temp = 1;

158 setsockopt (the_socket, SOL_SOCKET, SO_REUSEADDR, (char*)temp, sizeof (int));

159

160 /* sets the size of the send and receive buffer -- 64 kb */

161 *temp = 64; /* kilobytes */

162 setsockopt (the_socket, SOL_SOCKET, SO_SNDBUF, (char*) temp, sizeof (int));

163 setsockopt (the_socket, SOL_SOCKET, SO_RCVBUF, (char*) temp, sizeof (int));

164

165 /* attempts to bind the socket -- failure returns -1 */

166 res = bind (the_socket, (struct sockaddr*) (&name), sizeof (sockaddr_in));

167 if (res == -1)

168 {

169 printf ("ADMINISTRATOR ERROR: unable to bind socket to port number %d.\n",

170 port_number);

171 return;

172 }
173

174 /* listen to the socket, waiting for agents to connect ... */

175 listen (the_socket, 5);·

176 len = sizeof (sockaddr_in);

177

178 ns = accept (the_socket, (struct sockaddr*) (&name), &len);

179

180 /* we've received a connection, check to see if it's an agent */

181 read (ns, &received, sizeof (int8));

182

183 if (received == AGENT_CONNECT)

184 {

185 printf ("ADMINISTRATOR: an agent has connected ... \n");

186 answer = ADMIN_ACKNOWLEDGE_AGENT_CONNECT;

187 write (ns, &answer, sizeof (int8));

25

-
188 }
189 else
190 {
191 printf (II ADMINISTRATOR: something has, connected on the agent port, \n ll

) ;

192 printf (II but it didn't identify itself as an agent. \n ll
) ;

193 printf (II Proceeding, but problems may arise. \n ll
) ;

194 }

195

196 /* this will either be a device request, or a device done ... */

197 read (ns, &received, sizeof (int8));

198

199 int32 val;

200

201 while (received != AGENT_DEVICE_REQUEST_DONE)

202 {

203 printf (IIADMINISTRATOR: handling device request ... \n ll

);

204
205 if (received == AGENT_DEVICE_REQUEST)

206 {

207 read (ns, &val, sizeof (int32));

208 device_connections [number_of_devices] = connect_device (val);

209 number_of_devices++;

210 }

211

212 else

213 {

214 printf (IIADMINISTRATOR: agent device request protocol not followed\n',');

215 printf (II by connecting agent. Proceeding, but\n ll

);

216 printf (II problems may arise. \n ll
);

217 }
218 /* get next command (either a device request or a device done) */

219 read (ns, &received, sizeof (int8));

220 }

221

222 printf ("ADMINISTRATOR: device module setup complete\n ll

);

223

224 int32 device_id, length;

225 char* message;

226

227 /* block on a read until the agent tells us

228 read (ns, &received, sizeof (int8));

229 while (received != AGENT_DISCONNECT)

230 {
231 if (received == AGENT_SEND_DEVICE)

232 {

233 /* which device? */

234 read (ns, &device_id, sizeof (int32));

235

26

to do something */

•

236 1* how long is the message? *1
237 read (ns, &length, sizeof (int32));
238
239 1* this would be where we would examine the request, and verify ownership
240 (if necessary) *1
~1

242 message = (char*) malloc (length);
~3

244 1* just past the message through *1
245 read (ns, message, length);
246 write (device_connections [device_id-l], message, length);
247 free (message);
~8

249 1* listen on the device socket and pass what we get back to the agent *1
250
251 1* length of the message *1
252 read (device_connections [device_id-l], &length, sizeof (int32));
253 message = (char*) malloc (length);
2~

255 1* the message *1

256 read (device_connections [device_id-l], message, length);

257 write (ns, message, length);

258 free (message);

259 }

260 1* block on a read until the agent tells to do something, again *1

261 read (ns, &received, sizeof (intS));

262 }

263 } 1* agent_listener () *1

2~

265

266

267 1***

268 connect_device ()
269 ***1
2W
271 int connect_device (int n)

2~ {

273 device_info *current_node;

274 current_node = device_list;

2%

276 char *bin, *path;

277

278 1* look for device id n in the linked list *1

279 while (current_node)

280 {

281 if (current_node->dev_id == n)

282 {

283 bin = current_node->bin;

27

-
284 path = current_node->path;
285 }

286 current_node = current_node->next;

287 }

288

289 /* we assume that the dev_id is in the list ... needs error trapping */
290
291 /* fork off a process to execute the device program */
292 pid_t childpid;
293 if «childpid = fork ()) == 0)
294 {

295 if (execl (path. bin. NULL) < 0)
296 {

297 printf ("ADMINISTRATOR: unable to execute %s\n". bin);
298 return (-1);
299 }

300 exit (0);
301 }

302
303 /* set up the socket to listen... */
304
305 listen (the_socket. 5);
306 int len = sizeof (sockaddr_in);
307
308 int return_val = accept (the_socket, (struct sockaddr*) (&name), &len);
309 int8 val = ADMIN_QUERY_DEVICE;
310 write (return_val, &val, sizeof (int8));
311
312 /* listen for a response */
313 read (return_val, &val, sizeof (int8));
314 if (val != DEVICE_READY)

315 printf ("ADMINISTRATOR:

316

317 return (return_val);

318 } /* connect_device () */

319

320
321
322
323

the device is not behaving as expected ... \n");

324 device_info *read_device_list ()
325 {

326 int dev, len, max_share, max_multi

327 char bin [100] , host [100] , share [100] , mult[100];

328

329 /* open the device list file -- it must be in our directory */

330 FILE *devfile = fopen ("device_list", "r");

331 if (devfile == NULL)

28

-
332 {

333 printf ("ADMINISTRATOR ERROR: unable to open device_list\n");
334 exit (0);
335 }

336
337 find_next_data (devfile); /* skip the comments and find data */
338
339 /* create the first node in our linked list */
340 device_info *dev_list = NULL;
341 device_info *current_node = NULL;
342 device_info *last_node = NULL;
343
344 dev_list = (device_info *) malloc (sizeof (dev_list)+100);
345 current_node = dev_list;
346
347 while ((feof(devfile)) == 0)
348 {

349 /* allocate memory for the next one in line */
350 current_node->next = (device_info *) malloc (sizeof (dev_list) + 100);
351
352 /* read the data from file */
353 fscanf (devfile, "%d los los los %s\n", &:dev, bin, host, share, mult);
354
355 /* printf ("%d los los los %s\n", dev, bin, host, share, mult);*/
356
357 /* copy the device id */
358 current_node->dev_id = dev;
359
360 /* copy the binary path and name */
361 len = strlen (bin);
362 current_node->path = (char*) malloc (len+l);
363 strncpy (current_node->path, bin, len);
364 current_node->path [len] = '\0';
365
366 /* walk backwards and get the binary itself ... */
367 char ch = ,\0' ;
368 int temp_len = len;
369 while (ch != 'I')
370 {

371 temp_len--;
372 ch = bin [temp_len];
373 }

374
375 temp_len++;
376 current_node->bin = (char*) malloc (len - temp_len);
377
378 for (int i = 0; i < len-temp_len; i++)
379 current_node->bin [i] = bin [temp_len + i];

29

•

380
381 current_node->bin [len-temp_Ien] = '\0';
382
383 /* copy the host name */
384 len = strlen (host);
385 current_node->host = (char*) malloc (len+1);
386 strncpy (current_node->host, host, len);
387 current_node->host [len] = '\0';
388
389 /* interpret the share */
390 if (strcmp (ll no- share ll , share) == 0)
391 current_node->shared = 0;
392 else if (strcmp (ll share ll , share) == 0)
393 current_node->shared = 1;
394 else
395 {
396 printf (IIADMINISTRATOR WARNING: cannot understand \ '%s\' for II
397 printf ("device %d\nll , dev);
398 current_node->shared = 0;
399 }
400
401 /* interpret the multiple */
402 if (strcmp (llno-multiplell, mult) == 0)
403 current_node->multiple = 0;
404 else if (strcmp (llmultiple ll , mult) == 0)
405 current_node->multiple = 1;
406 else
407 {
408 printf (IIADMINISTRATOR WARNING: cannot understand \'%s\' for"
409 printf (lldevice %d\n", dev);
410 current_node->multiple = OJ
411 }
412
413 /* maintain the linked list */
414 last_node = current_node;
415 current_node = current_node->next;
416
417 /* skip the comments and whitespace -- just find data */
418 find_next_data (devfile);
419 }
420 fclose (devfile);
421
422 free (last_node->next);
423 last_node->next = NULL;
424

425 return (dev_list);

426 } /* read_device_Iist () */

427

30

share);

mult);

..

428
429
430 /***
431 find_next_data ()
432 ***/
433
434 void find_next_data (FILE *file)

435 {

436 /* if the next character is a '#' -- the line is a comment and should be

437 discarded ... if the next character is whitespace, it should likewise be

438 removed */

439

440 char c;

441 int loop = 1;

442

443 char garbage [100];

444

445 while (loop)

446 {

447 c = fgetc (file);
448

449 /* if we have a pound sign, then the rest of that line is comment;

450 keep reading until we find a \n */

451

452 if (c == '#')

453 while (c != '\n') c = fgetc (file);

4~
455 /* if it's a digit ... then we have data */
456 else if (isdigit (c»
457 {
458 ungetc (c, file);
459 loop = 0;
460 }
4~
462 /* if we hit the end of the file ...

463 else if (c == EOF)

464 loop = 0;

4~ }

466 } /* find_next_data () */

break the loop */

31

-

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43

Appendix C shelley_sockets.h

/***
Andy Ritger
Research Honors
4-26-99

shelley_sockets.h

The shelley_sockets are a small collection of functions to create a socket
connection between two independent processes either existing on the same
computer, or distributed over a network.

**/

#ifndef SHELLEY_SOCKETS _

#define SHELLEY_SOCKETS _

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include <netdb.h>

#include <unistd.h>

/***
This function should be called when we want to have our server listen for
connections on a specific port number. The return value is the socket
id, or -1 if the function fails.
**/

int shelley_sockets_server_listen_for_client (int port_number);

/***
This function should be called when we want to have our client connect to

32

..

44 an existing server. We pass in the port on which to connect, and the
45 name of the machine on which the server is being run -- set this to
46 "localhost" if the server is on the same machine as the client. Returns
47 -1 if it fails to connect.
48 **/
49
50 int shelley_sockets_client_connect_to_server (int port_number, char* hostname);
51
52
53
54 1***
55 Read from the socket; this blocks until there is length_to_read bytes
56 to read at the socket. When this returns, what was read is pointed to by
57 the data pointer.
58 **/
59
60 int shelley_sockets_read (int the_socket, char *data, int length_to_read);
61
62
63
64 /***
65 Write to the socket. What should be written should be pointed to by the
66 data pointer, and be length_to_write bytes long.

67 **/

68

69 int shelley_sockets_write (int the_socket, char *data, int length_to_write);

70
n
~

73 #endif

33

-

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Appendix D shelley_sockets.c

/***
Andy Ritger
Research Honors
4-26-99

shelley_sockets.c

**/

#include "shelley_sockets.h"

int shelley_sockets_server_listen_for_client (int port_number)
{

int addr = port_number; /* won't need this */

int *temp, response, i, n;

int ns, player_no, the_socket;

int len, res;

char response2, *pname;

sockaddr_in name;

/**

see the man page on socket (SunOS 5.5, socket(3N»:

socket() creates an endpoint for communication and returns a descriptor.

... The domain parameter specifies a communications domain within which
communication will take place; this selects the protocol family which
should be used. The protocol family generally is the same as the address
family for the addresses supplied in later operations on the socket.
These families are defined in the include file <sys/socket.h> ...

... A SOCK_STREAM type provides sequenced, reliable, two-way connection-
based byte streams ... Sockets of type SOCK_STREAM are full-duplex byte
streams, similar to pipes. A stream socket must be in a connected
state before any data may be sent or received on it. A connection to
another socket is created with a connect(3N) call.
**/

the_socket = socket (AF_INET, SOCK_STREAM, 0);

34

•

44
45 /* set the port number */
46 name.sin_family = AF_INET;
47 name.sin_port = htons (port_number);
48 n = INADDR_ANY;
49 memcpy (tname.sin_addr, tn, sizeof (long));
50
51 /* enables reuse of the port number -- this is a very good thing */

52 temp = (int*) malloc (sizeof (int));

53 *temp = 1;

54 setsockopt (the_socket, SOL_SOCKET, SO_REUSEADDR, (char*)temp, sizeof(int));

55

56 /* sets the size of the send and receive buffer

57 *temp = 64; /* kilobytes */

58 setsockopt (the_socket, SOL_SOCKET, SO_SNDBUF,

59 setsockopt (the_socket, SOL_SOCKET, SO_RCVBUF,

60

-- 64 kb */

(char *)temp, sizeof(int));
(char *)temp, sizeof(int));

61 /* attempts to bind the socket -- failure returns -1 */

62 res = bind (the_socket, (struct sockaddr*) (&name), sizeof

63 if (res == -1)

64 {

65 printf ("SHELLEY SOCKET ERROR: unable to bind socket\n");

66 return (-1);

67 }
68

69 /* listen to the socket, vaiting for a client to connect ...

70 connects, then the ve viII listen forever, perhaps some

71 should be implemented */

72

73 listen (the_socket, 5);

74 len = sizeof (sockaddr_in);

75 ns = accept (the_socket, (struct sockaddr*) (&name), &len);

76

(sockaddr_in));

if no client
timing mechanism

77 /* if ve get to this point, then a connection has been made */

78

79 return (ns);

80
81 } /* shelley_sockets_server_listen_for_client () */

82

83

84

85

86 int shelley_sockets_client_connect_to_server (int port_number, char* hostname)

87 {

88 int *temp, response, i, n, ns, player_no, the_socket, len, res;

89 struct hostent *hp;

90 struct sockaddr_in name;

91 char buffer [50];

35

•

92
93 the_socket = socket (AF_INET, SOCK_STREAM, O)j

94

95 /* enable reuse of port number */

96 temp = (int *) malloc (sizeof (int))j

97 *temp = 1;

98 setsockopt (the_socket, SOL_SOCKET, SO_REUSEADDR, (char*) temp, sizeof(int))j

99

100 /* set the size of the send and receive buffer */

101 *temp = 64j /* assuming kilobytes - if bytes must set to 65536 */

102 setsockopt (the_socket, SOL_SOCKET, SO_SNDBUF, (char*) temp , sizeof (int))j

103 setsockopt (the_socket, SOL_SOCKET, SO_RCVBUF, (char*)temp, sizeof (int))j

104

105 memset (&name, 0, sizeof (struct sockaddr_in))j

106 name.sin_family = AF_INETj

107

108 name.sin_port = htons (port_number);

109 hp = gethostbyname (hostname)j

110

111 memcpy (&name.sin_addr, hp->h_addr_Iist[O] , hp->h_Iength) j

112 len = sizeof (struct sockaddr_in)j

113

114 /* connect to server */

115 if «connect (the_socket, (struct sockaddr *) &name, len)) -- -1)

116 {

117 the_socket = -1j

118 printf ("SHELLEY SOCKET ERROR: client unable to connect to server\n") j,

119 }
120
121 return (the_socket)j
122 } /* shelley_sockets_client_connect_to_server () */
123
124
125
126 int shelley_sockets_read (int the_socket, char *data,
127 {
128 int amount_to_readj
129 int amount_readj
130 int return_val = Ojj
131 char *pointerj
132
133 pointer = dataj
134
135 amount_to_read = length_to_readj
136
137 /* loop as long as it takes to read all the data */

138 while (amount_to_read > 0)

139 {

36

int length_to_read)

•

140 amount_read = read (the_socket, pointer, amount_to_read);

141 if ((amount_read == EOF) I I (amount_read == 0»

142 {

143 printf (" SHELLEY SOCKETS: unable to read from socket \n") ;

144 amount_to_read = 0;

145 return_val = -1;

146 }

147 amount_to_read -= amount_read;

148 pointer += amount_read;

149 }

150
151 return (return_val);
152 } /* shelley_sockets_read () */
153
154
155
156 int shelley_sockets_write (int the_socket, char *data, int length_to_write)
157 {
158
159 int amount_to_write = 0;
160 int amount_written = 0;
161 char *pointer = data;
162
163 amount_to_write = length_to_write;
164
165 /* loop as long as it takes to write all the data */
166 while (amount_to_write > 0)
167 {
168 amount_written = write (the_socket, pointer, amount_to_write);
169 amount_to_write -= amount_written;
170 pointer += amount_written;
171 }
172
173 return (0);
174
175 } /* shelley_sockets_write () */

37

-

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Appendix E frame_grabber_protocol.h

1**
Andy Ritger

Research Honors

4-26-99

The Frame Grabber Device Module Protocol

Note that all constants are sent across sockets as type int8.

***1

#ifndef SIE_FRAME_GRABBER_PROTOCOL _
#define SIE_FRAME_GRABBER_PROTOCOL _

#define FRAME_GRAB_INIT_VALUE 0

1**
The FRAME_GRAB_REQUEST_RESOLUTION message asks the frame grabber device
module what resolution it is returning frames at. This returns two int32s:
the width and height (in pixels).
***1

#define FRAME_GRAB_REQUEST_RESOLUTION 1

1**
The FRAME_GRAB_SET_RESOLUTION message is followed by a float which

corresponds to the scale factor which will be multipled by the original

dimensions of the image. The FRAME_GRAB_YES message is returned upon

success.

***1

#define FRAME_GRAB_SET_RESOLUTION 2

38

•

44
45

/**
The FRAME_GRAB_QUERY_GREYSCALE_SUPPORT message queries the device module

46 if it can support grabbing frames in greyscale. One of the messages
47 FRAME_GRAB_NO or FRAME_GRAB_YES are returned in response.
48 ***/
49
50 #define FRAME_GRAB_QUERY_GREYSCALE_SUPPORT 3
51
52
53
54 1**
55 The FRAME_GRAB_QUERY_RGB_SUPPORT message queries the device module if it can
56 support grabbing frames in rgb color encoding. One of the messages
57 FRAME_GRAB_NO or FRAME_GRAB_YES are returned in response.
58 ***/
59
60 #define FRAME_GRAB_QUERY_RGB_SUPPORT 4
61
~

63
64 /**
65 The FRAME_GRAB_NO and FRAME_GRAB_YES message are used as respones to
66 requests to the device module.
67 ***/
68
69 #define FRAME_GRAB_NO 5
70 #define FRAME_GRAB_YES 6
n
~

~

74 /**
75 The FRAME_GRAB_SELECT_INPUT_PORT message is followed by an int32 which
76 specifies the port number the device should use to receive video.
77 ***/
n
79 #define FRAME_GRAB_SELECT_INPUT_PORT 7
80
81
82
83 /**
84 The FRAME_GRAB_GRAB_FRAME message tells the device module to flush the video
85 buffer and grab the current frame of video. Returned is a row major stream
86 of bytes, where each byte is a grey-scale pixel value.
87 ***/
88
89 #define FRAME_GRAB_GRAB_FRAME 8
90
91

39

-
92
93 /**
94 The FRAME_GRAB_ENABLE_DISPLAY message tells the video grabber to show the
95 grabbed frame to an X-Window. Returns FRAME_GRAB_YES.
96 ***/
97
98 #define FRAME_GRAB_ENABLE_DISPLAY 9
99
100
101
102 /**
103 The FRAME_GRAB_DISABLE_DISPLAY message tells the video grabber to not show
104 the grabbed frame to an X-Window. Returns FRAME_GRAB_YES.
105 ***/
106
107 #define FRAME_GRAB_DISABLE_DISPLAY 10
108
109
110 #endif
111

40

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Appendix F frame_grabber.c

/**
Andy Ritger

Research Honors

4-26-99

frame_grabber.c

Interface to sun video cameras; modified from original sample program
included with hardware ...

***/

#include <stdio.h>

#include <stdlib.h>

#include <xil/xil.h>

#include <signal.h>

#include "sie_protocol.h"

#include "shelley_sockets .h"

#include "frame_grabber_protocol.h"

/* needed by init_cmap () */

#define CMAPSIZE 256
#define TOP2 50 /* reserve the top two entries of the

* colormap to reduce colormap flashing */

/* function prototypes */

void close_cleanly (int sig);

void rip_frame (XilImage img, unsigned char *data, int w, int h);

void init_cmap (XilLookup xil_cmap, Display * display, Window window,

int offset);

/* global variables */

XilSystemState _xiI_state;

Display *xdisplay;

41

•

44
45
46
47 /**
48 main 0
49 ***/
50
51 main (int argc, char **argv)
52 {
53 XilDevice device;
54 Xillmage rtvc_image, rtvc_Iuma, rtvc_scaled;
55 XilDataType datatype;
56
57 /* fun with Xlib */
58 Window xwindow;
59 XEvent event;
60 int display_depth;
61
62 int32 width, height, original_width, original_height, nbands;
63
64 char *devname = "/dev/rtvcO";
65 int max_buffers = 0;
66 float scale_factor = 1.0;
67 int32 port_number = 1;
68 int window_shown = 0;
69 int display_enabled = 0;
70
71 unsigned char *data = NULL;
72
73 /**************************
74 open the xil library
75 *************************/
76
77 _xiI_state = xiI_open ();
78 if (_xiI_state == NULL)
79 {
80 fprintf (stderr, "unable to open xil library\n");
81 exit (1);
82 }
83
84 /* catch "-e" so that we can close things cleanly */
85
86 signal (SIGINT, close_cleanly);
87
88 /* create a device so that we can set its attributes */
89
90 if (! (device = xil_device_create LXil_state, "SUNWrtvc")))
91 {

42

•

92 fprintf (stderr, "Unable to create a device object\n");

93 xil_close (_xil_state);

94 exit(1);

95 }

96

97 xil_device_set_value (device, "DEVICE_NAME", (void *) devname);

98 xil_device_set_value (device, II MAX_BUFFERS II , (void *) max_buffers);

99 xil_device_set_value (device, II PORT_V II , (void *) port_number);

100
101 /* create an xil image with the above defined device values */
102
103 if (! (rtvc_image = xil_create_from_device <-xil_state, ISUNWrtvc", device)))
104 {
105 fprintf (stderr, "failed to open SUNWrtvc device\n");
106 xil_close (_xil_state);
107 exit (1);
108 }
109
110 /* release the xil device */
111
112 xil_device_destroy (device);
113
114 /* get all the information about the image */
115
116 xil_get_info (rtvc_image, &original_width, &original_height,
117 &nbands, &datatype)j
118
119 width = (int32) (original_width * scale_factor);
120 height = (int32) (original_height * scale_factor);
121
122 /* create a copy of the image that will have just the 1st band */
123
124 rtvc_luma = xil_create_child (rtvc_image, 0, 0, original_width,
125 original_height, 0, 1);
126
127 /* create a scaled image to put our scaled copies */
128

129 rtvc_scaled = xil_create (_xil_state, width, height, 1, datatype);

130
131 /* setup the Xwindow and other fun things ... */

132

133 /* xlib window creation */

134

135 xdisplay = XOpenDisplay (NULL);

136

137 if (!xdisplay)

138 {

139 fprintf (stderr, "Unable to connect to X-server\n");

43

-
140 xiI_close (_xiI_state);
141 exit (1);
142 }
143
144 display_depth = DefaultDepth (xdisplay, DefaultScreen (xdisplay));
145 xwindow = XCreateSimpleWindow (xdisplay, DefaultRootWindow (xdisplay),
146 0, 0, width, height, 0, 0, 0);
147 if (!xwindow) {
148 fprintf (stderr, "Unable to create X-window\n");
149 xiI_close (_xiI_state);
150 exit (1);
151 }
152
153 /* we'll only worry about the expose event */
154
155 XSelectInput (xdisplay, xwindow, ExposureMask);
156
157 /* We're operating at 8 bit display depth */
158
159 XilLookup grayramp;
160 int num_entries = 256;

161

162 Xil_unsigned8 *graydata = (Xil_unsigned8 *) malloc (3 * num_entries);

163 for (int i = 0; i < num_entries; i++)

164 graydata [i * 3 + 2] = graydata [i * 3 + 1] = graydata [i * 3] = i;

165

166 grayramp = xil_Iookup_create (_xiI_state, XIL_BYTE, XIL_BYTE,

167 3, num_entries, 0, graydata);

168

169 /* connect to administrator on localhost at 2048 */

170
171 int sock = shelley_sockets_client_connect_to_server (2048, "localhost ll);

172 if (sock == -1)

173 {

174 fprintf (stderr, llfailed to connect to server\n");

175 xiI_close (_xiI_state);

176 exit (1);

177 }

178

179 /* hand shake with administrator */

180
181 int8 my_val;

182 shelley_sockets_read (sock, (char*) tmy_val, sizeof (int8));

183 if (my_val != ADMIN_QUERY_DEVICE)

184 {

185 fprintf (stderr, "I am confused\n");

186 exit (1);

187 }

44

188 my_val = DEVICE_READY;

189 shelley_sockets_write (sock, (char*) &my_val,

190

191 1* start the request loop *1

192

193 int32 return_val;

194 int8 command = FRAME_GRAB_INIT_VALUE;

195 int val;

196 while (command != ADMIN_DISCONNECT_DEVICE)

197 {

198 1* block until we get the next command *1

199

•

200 if «shelley_sockets_read (sock, (char*) &command, sizeof (int8))) -- -1)
201 close_cleanly (0);
202 else
203 {
204 switch (command)
205 {
206 case FRAME_GRAB_REQUEST_RESOLUTION:
207 1* return the resolution we're using ... *1
208 return_val = sizeof (int32) * 2;
209 shelley_sockets_write (sock, (char*) &return_val, sizeof (int32));
210 shelley_sockets_write (sock, (char*) &width, sizeof (int32));
211 shelley_sockets_write (sock, (char*) &height, sizeof (int32));
212 break;
213
214 case FRAME_GRAB_SET_RESOLUTION:
215 1* reset the scale factor *1
216 shelley_sockets_read (sock, (char*) &scale_factor, sizeof (float));
217
218 1* need to error trap scale factor values *1
219 width = (int) (original_width * scale_factor);
220 height = (int) (original_height * scale_factor);
221
222 1* destroy the current scaled image *1
223 xiI_destroy (rtvc_scaled);
224
225 1* create a new scaled image, and xwindow *1
226 XResizeWindow (xdisplay, xwindow, width, height);
227 if «display_enabled) && (window_shown))
228 rtvc_scaled = xil_create_from_window (_xiI_state, xdisplay, xwindow);
229 else
230 rtvc_scaled = xiI_create (_xiI_state, width, height, 1, datatype);

231

232 return_val = 1;

233 my_val = FRAME_GRAB_YES;

234 shelley_sockets_write (sock, (char*) &return_val, 4);

235 shelley_sockets_write (sock, (char*) &my_val, 1);

45

sizeof (int8));

•

236
237 break;
238
239 case FRAME_GRAB_QUERY_GREYSCALE_SUPPORT:
240 /* yes, we do support greyscale */
241 my_val = FRAME_GRAB_YES;
242 return_val = sizeof (int8);
243 shelley_sockets_write (sock, (char*) &return_val, sizeof (int32»;
244 shelley_sockets_write (sock, (char*) &val, sizeof (int8»;
245 break;
246
247 case FRAME_GRAB_QUERY_RGB_SUPPORT:
248 /* no, we do not support rgb (yet? ..) */
249 my_val = FRAME_GRAB_NO;
250 return_val = sizeof (int8);
251 shelley_sockets_write (sock, (char*) &return_val, sizeof (int32»;
252 shelley_sockets_write (sock, (char*) &val, sizeof (int8»;
253 break;
254
255 case FRAME_GRAB_SELECT_INPUT_PORT:
256 /* select which video port (lor 2) ... needs to be error trapped */
257 shelley_sockets_read (sock, (char*) &port_number, sizeof (int32»;
258 xil_set_device_attribute (rtvc_image, "PORT_V", (void *) port_number);
259 break;
260
261 case FRAME_GRAB_ENABLE_DISPLAY:

262 /* enable the X window */

263 display_enabled = 1;

264 return_val = 1;

265 my_val = FRAME_GRAB_YES;

266 shelley_sockets_write (sock, (char*) &return_val, 4);

267 shelley_sockets_write (sock, (char*) &my_val, 1);

268 break;

269

270 case FRAME_GRAB_DISABLE_DISPLAY:

271 /* disable the X window */

272 display_enabled = 0;

273 if (window_shown)

274 {

275 /* these two lines give focus to the xwindow, and then take the

276 focus away; this is so the window manager colors are released

277 when the xwindow is unmapped. */

278 XSetlnputFocus (xdisplay, xwindow, RevertToNone, CurrentTime);

279 XSetlnputFocus (xdisplay, PointerRoot, RevertToNone, CurrentTime);

280
281 /* unmap the xwindow (hide it) */

282 XUnmapWindow (xdisplay, xwindow);

283

46

-
284 /* force any updates which need to happen */
285 XFlush (xdisplay);
286 window_shown = 0;
287 }
288
289 /* destroy and recreate the scaled image so that it is not connected
290 to the xwindow */
291 xiI_destroy (rtvc_scaled);
292 rtvc_scaled = xiI_create (_xiI_state, width, height, 1, datatype);
293
294 return_val = 1;
295 my_val = FRAME_GRAB_YES;
296 shelley_sockets_write (sock, (char*) &return_val, 4);
297 shelley_sockets_write (sock, (char*) &my_val, 1);
298 break;
299
300 case FRAME_GRAB_GRAB_FRAME:
301 /* flush, and grab a current frame of video */
302 if «window_shown == 0) && (display_enabled))
303 {
304 window_shown = 1;
305 XMapWindow (xdisplay, xwindow); /* make the window visible */
306 do /* wait for the window to be mapped (an Expose event) */
307 XNextEvent (xdisplay, &event);
308 while (event.xany.type != Expose);

309 xiI_destroy (rtvc_scaled);

310 rtvc_scaled = xil_create_from_window (_xiI_state, xdisplay, xwindow);

311 init_cmap (grayramp, xdisplay, xwindow, 0);

312 }

313

314 /* flush */

315 xil_set_device_attribute (rtvc_image, "FLUSH_BUFFERS", NULL);

316

317 /* if display is connected to an xwindow, the scale draws it to

318 screen; otherwise, this just makes an internal scaled copy which

319 we need so that we can grab the data */

320
321 xiI_scale (rtvc_Iuma, rtvc_scaled, "nearest", scale_factor,

322 scale_factor);

323 if (data == NULL)

324 data = (unsigned char *) malloc (width * height);

325 rip_frame (rtvc_scaled, data, width, height);

326 return_val = width*height;

327 shelley_sockets_write (sock, (char*) &return_val, sizeof (int32));

328 shelley_sockets_write (sock, (char *) data, (width * height));

329 break;

330
331 case ADMIN_DISCONNECT_DEVICE:

47

•

332 /* we're supposed to quit, now */

333 close_cleanly (0);

334 break;

335

336 } /* switch statement */

337

338 } /* if the read succeeded */

339

340 } /* while */

341 return 0;

~2

343 } /* end main () */
~4
~5

~6

347 /**
348 close_cleanly ()
349 ***/
350
351 void close_cleanly (int sig)

352 {

353 if (xdisplay) XCloseDisplay (xdisplay);

354 xiI_close (_xiI_state);

355 exit (0);

356 } /* end close_cleanly () */

357

358

359

360 /**
361 rip_frame ()
362 ***/
363

364 void rip_frame (Xillmage img, unsigned char *data, int w, int h)

365 {

366 /* allocate pixel values buffer */

367 float *pixel_vals = (float *) malloc (3 * sizeof (float));

368

369 for (int y = 0; y < h; y++)

370 for (int x = 0; x < w; x++)

3n {

372 /* get a specific pixel from the image */

373 xil_get_pixel (img, x, y, pixel_vals);

3~
375 /* copy the data into our data stream to be sent to an agent */

376 data [(y * w) + x] = (unsigned char) pixel_vals [0];

377 }

378 } /* end rip_frame () */

3~

48

•

380
381
382 /**
383 init_cmap()
384
385 Initialize the X colormap with a 3-banded XilLookup, using the 'offset'
386 argument to determine the starting pixel value in the X colormap. If the
387 'offset' argument is negative, automatically calculate the starting pixel
388 value in such a way as to minimize colormap flashing.

389

390 Finally, adjust the offset of the XilLookup accordingly.

391 ***/
392
393 void init_cmap (XilLookup xil_cmap, Display * display, Window window,
394 int offset)
395 {
396 unsigned long junk [CMAPSIZE] , pixels [CMAPSIZE] , maskj
397 XColor cdefs[CMAPSIZE]j
398 Colormap rcmapj
399 int cmapsizej
400 int i j
401 Xil_unsigned8 cmap_data[CMAPSIZE * 3]j
402 Xil_unsigned8 *ptrj
403
404 rcmap = XCreateColormap(display, window,
405 DefaultVisual(display, DefaultScreen(display)),
406 AllocNone)j
407
408 cmapsize = xil_lookup_get_num_entries(xil_cmap)j
409
410 /* determine the offset for the colormap */
411 if (offset < 0) {
412 offset = 256 - cmapsize - TOP2j
413 if (offset < 0)
414 offset = OJ /* in case cmapsize >= 255 */
415 }
416
417 if (offset) {
418 if (!XAllocColorCells(display, rcmap, 0, &mask, 0,
419 fprintf (stderr, "XAlloc! failed\n") j
420 }
421 }
422

junk, offset)) {

423 if (!XAllocColorCells(display, rcmap, 0, &mask, 0, pixels, cmapsize)) {

424 fprintf (stderr, "XAlloc2 failed\n") j

425 }

426

427 /* free the unused colors in the front */

49

428 if (offset) {

429 XFreeColors (display, rcmap, junk, offset, 0);

430 }

4~

432 for (i = 0; i < cmapsize; i++) {

433 cdefs[i].pixel = i + offset;

4~ }

435

436 xil_Iookup_get_values(xil_cmap, xil_Iookup_get_offset(xil_cmap),

437 cmapsize, cmap_data);

438

439 ptr = cmap_data;

440 for (i = 0; i < cmapsize; i++) {

441 cdefs[i].flags = DoRed I DoGreen I DoBlue;

442

443 1*
444 * since 24-bit XIL images are in BGR order, colormaps are also in
445 * BGR order
446 *1
447 cdefs[i] .blue = *ptr++ « 8;

448 cdefs[i] .green = *ptr++ « 8;

449 cdefs[i].red = *ptr++« 8;

450 }

451 XStoreColors (display , rcmap, cdefs, cmapsize);

452

453 1*
454 * This viII cause the colormap to be installed unless the cursor is
455 * moved to another vindov -- any other vindov; if this happens, then
456 * colormap flashing may occur.
457 *1
458 XSetWindovColormap(display, vindov, rcmap);

459 XlnstaIIColormap(display, rcmap);

460 XSync (display , False);

4~

4~
463 1* set the offset of the XilLookup *1

464 xil_Iookup_set_offset(xil_cmap, offset);

4~ }

50

Appendix G Frame_Grabber.H

•

1 /***
2 Andy Ritger
3 Research Honors
4 4-26-99
5
6 Frame_Grabber.H
7
8 The Frame_Grabber class is a wrapper for the SIE frame grab API.
9
10 ***/
11
12
13
14 #ifndef FRAME_GRABBER_WRAPPER _
15 #define FRAME_GRABBER_WRAPPER _
16
17
18
19 #include "sie_protocol.h"
20 #include "frame_grabber_protocol.h"
21 #include II shelley_socket s .h II

22
23
24 class Frame_Grabber
25 {
26 public:
27 Frame_Grabber (int sock_number)j
28 -Frame_Grabber () {}j
29

30 int get_width () { return widthj }j

31 int get_height () { return heightj }j

32
33 void set_scale_factor (float factor)j

34

35 void enable_display ()j

36 void disable_display ()j

37

38 void select_input_port (int32 port)j

39

40 void grab_frame (unsigned char *data)j

41

42 private:

43 int sockj

51

-
44 int32 width;

45 int32 height;

46 bool error;

47 };

48

49

50

51 #endif

52

Appendix H Frame_Grabber.C

•

1 1***
2 Andy Ritger
3 Research Honors
4 4-26-99
5
6 Frame_Grabber.C
7
8 ***1
9
10 #include IFrame_Grabber.H"
11
12
13
14 Frame_Grabber: :Frame_Grabber (int sock_number)
15 {
16 II initialize internal things ...
n
18 II we make the assumption that we have already connected to the admin
19 sock = sock_number;
20 error = false;
21
22 II what we're doing
23 int8 val = AGENT_SEND_DEVICE;
24 shelley_sockets_write (sock, (char*) &val, sizeof (int8));
25
26 II to which device
27 int32 va132 = 1;
28 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));
29
30 II how long the message is
31 va132 = sizeof (int8);
32 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));
33

34 II the message (it's about time)

35 val = FRAME_GRAB_REQUEST_RESOLUTION;

36 shelley_sockets_write (sock, (char*) &val, sizeof (int8));

37

38 II the next thing coming back is the resolution

39 shelley_sockets_read (sock, (char*) &width, sizeof (int32));

40 shelley_sockets_read (sock, (char*) &height, sizeof (int32));

41

42 } II constructor

43

53

•

44
45
46 void Frame_Grabber::set_scale_factor (float factor)
47
48

{
if (sock == -1) return;

49
50 II what we're doing
51 int8 val = AGENT_SEND_DEVICE;
52 shelley_sockets_write (sock, (char*) &val, sizeof (int8));
53
54 II to which device
55 int32 va132 = 1;
56 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));
57
58 II how long the message is
59 va132 = sizeof (int8) + sizeof (float);
60 shelley_sockets_write (sock, (char*) &va132 , sizeof (int32));
61
62 II the message (finally)
63 val = FRAME_GRAB_SET_RESOLUTION;
64 shelley_sockets_write (sock, (char*) &val, sizeof (int8));
65 shelley_sockets_write (sock, (char*) &factor, sizeof (float));
66
67 II frame grab returns a yes or no ...
68 shelley_sockets_read (sock, (char*) &val, sizeof (int8));
69
70 1* now get the new width and height *1
71
72 II what we're doing
73 val = AGENT_SEND_DEVICE;
74 shelley_sockets_write (sock, (char*) &val, sizeof (int8));
75
76 II to which device
77 va132 = 1;
78 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));
79
80 II how long the message is
81 va132 = sizeof (int8);
82 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));
83
84 II the message (it's about time)
85 val = FRAME_GRAB_REQUEST_RESOLUTION;
86 shelley_sockets_write (sock, (char*) &val, sizeof (int8));
87
88 II the next thing coming back is the resolution
89 shelley_sockets_read (sock, (char*) &width, sizeof (int32));
90 shelley_sockets_read (sock, (char*) &height, sizeof (int32));
91

54

..

92 } II set_scale_factor ()
93
~
95
96 void Frame_Grabber::enable_display ()
97 {
98 if (sock == -1) return;
99
100 II what we're doing
101 int8 val = AGENT_SEND_DEVICE;
102 shelley_sockets_write (sock, (char*) &val, sizeof (int8»;
103
104 II to which device
105 int32 va132 = 1;
106 shelley_sockets_write (sock, (char*) &va132 , sizeof (int32»;
107
108 II how long the message is
109 val = sizeof (int8);
110 shelley_sockets_write (sock, (char*) &va132, sizeof (int32»;
111
112 II the message (it's about time)
113 val = FRAME_GRAB_ENABLE_DISPLAY;
114 shelley_sockets_write (sock, (char*) &val, sizeof (int8»;
115
116 II frame grab returns a yes or no ...
117 shelley_sockets_read (sock, (char*) &val, sizeof (int8»;
118
119 } II enable_display ()
120
1~

122

123

124 void Frame_Grabber::disable_display ()

125 {

126 if (sock == -1) return;

127

128 II what we're doing

129 int8 val = AGENT_SEND_DEVICE;

130 shelley_sockets_write (sock, (char*) &val, sizeof (int8»;

131

132 II to which device

133 int32 va132 = 1;

134 shelley_sockets_write (sock, (char*) &va132, sizeof (int32»;

135

136 II how long the message is

137 va132 = sizeof (int8);

138 shelley_sockets_write (sock, (char*) &va132, sizeof (int32»;

139

55

-
140 II the message (it's about time)

141 val = FRAME_GRAB_DISABLE_DISPLAY;

142 shelley_sockets_write (sock, (char*) &val, sizeof (int8));

143

144 II frame grab returns a yes or no ...

145 shelley_sockets_read (sock, (char*) &val, sizeof (int8));

146

147 } II disable_display ()

148

149

150
151
152 void Frame_Grabber::select_input_port (int32 port)
153 {
154 if (sock == -1) return;
155
156 II what we're doing
157 int8 val = AGENT_SEND_DEVICE;
158 shelley_sockets_write (sock, (char*) &val, sizeof (int8));
159
160 II to which device
161 int32 va132 = 1;
162 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));
163
164 I I how long the message is
165 va132 = sizeof (int8) + sizeof (int32);
166 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));
167
168 II the message (it's about time)
169 val = FRAME_GRAB_SELECT_INPUT_PORT;
170 shelley_sockets_write (sock, (char*) &val, sizeof (int8));
171 shelley_sockets_write (sock, (char*) &port, sizeof (int32));
172
173 II frame grab returns a yes or no ...

174 shelley_sockets_read (sock, (char*) &val, sizeof (int8));

175
176 } II select_input_port ()
177
178

179

180
181 void Frame_Grabber::grab_frame (unsigned char *data)

182 {

183 if (sock == -1) return;

184 if (data == NULL) return;

185

186 II what we're doing

187 int8 val = AGENT_SEND_DEVICE;

56

•

188 shelley_sackets_write (sock, (char*) &val, sizeof (int8));
189
190 II to which device
191 int32 va132 = 1;
192 shelley_sackets_write (sock, (char*) &va132, sizeof (int32));
193
194 II how long the message is
195 va132 = sizeof (int8);
196 shelley_sackets_write (sock, (char*) &va132, sizeof (int32));
197
198 val = FRAME_GRAB_GRAB_FRAME;
199 shelley_sackets_write (sock, (char*) &val, sizeof (int8));
200
201 1* read the BIG 1-d array of chars ... *1
202 shelley_sackets_read (sock, (char *) data, (width * height));
203
204 } II grab_frame ()

57

-

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Appendix I neuraLnet_protocol.h

/**
Andy Ritger

Research Honors

4-26-99

The Artificial Neural Network Device Module Protocol

Note that all constants are sent across sockets as type int8.

***/

#ifndef SIE_NEURAL_NETWORK_PROTOCOL _

#define SIE_NEURAL_NETWORK_PROTOCOL _

#define NEURAL_NET_INIT_VALUE 0

/**
NEURAL_NET_CREATE is followed by three 32-bit integers: the number of input,
hidden and output nodes for the new network.

***/

#define NEURAL_NET_CREATE 1

/**
NEURAL_NET_FEED_FORWARD computes an answer(s) for the network by applying
the feed forward algorithm to the input layer and arriving at values at
the hidden layer, and similarly using the hidden layer to arrive at values
at the output layer.
***/

#define NEURAL_NET_FEED_FORWARD 2

/**

58

..

44 NEURAL_NET_LOAD_INPUT_VECTOR is followed by a stream of data which
45
46

corresponds to the double-precision values of the input layer. The
data stream is row-major (it can be indexed with: «y * maxx) + x)).

47 ***1
48
49 #define NEURAL_NET_LOAD_INPUT_VECTOR 3
50
51
52
53 1**
54 NEURAL_NET_LOAD_TARGET_VECTOR is followed by a 32-bit index value indicating
55 which output node we're talking about, which is then followed by the double
56 value which we want to assign to that target node.
57 ***1
58
59 #define NEURAL_NET_LOAD_TARGET_VALUE 4
60
61
~

63 1**
64 NEURAL_NET_TRAIN trains the network. NEURAL_NET_YES is returned when
65 training is complete.
66 ***1
67
68 #define NEURAL_NET_TRAIN 5
69
m
n
72 1**
73 NEURAL_NET_GET_OUTPUT_VALUE is followed by a 32-bit integer which
74 indicates which output node is in question. A double precision value
75 is returned indicating the value of that node.
76 ***1
77
78 #define NEURAL_NET_GET_OUTPUT_VALUE 6
~

80
81
82 1**
83 Yes and No responses from the Neural Network
84 ***1
85
86 #define NEURAL_NET_YES 7
87 #define NEURAL_NET_NO 8
88
89
90
91 #endif

59

Appendix J neuraLnet.c

•

1 1**
2 Andy Ritger
3 Research Honors
4 4-26-99
5
6 neural_net.C
7
8 This is the artificial neural network device module. We initiate things,
9 and then listen for commands. This interfaces with the bpnn class.
10
11 ***1

12

13 #include <stdio.h>

14 #include <stdlib.h>

15 #include <iostream.h>

16 #include <fstream.h>

17
18

19

20 #include "sie_protocol.h"

21 #include "neural_net_protocol.h"

22 #include "shelley_sockets .h"

23 #include "bpnn.H"

24

25

26

27 int main (int argc, char **argv)

28 {

29 bpnn *neural_net;

30 int32 input, hidden, output;

31 int32 va132;

32 int8 va18 ;

33

34 double *data;

35 double value;

36

37 double output_error, hidden_error;

38

39 II connect to administrator on localhost at 2048

40 int sock = shelley_sockets_client_connect_to_server (2048, "localhost");

41 if (sock == -1)

42 {

43 cout « "NEURAL NET: failed to connect to administrator." « endl;

60

•

44 exit (1);

45 }

46
47 II hand shake with administrator
48 shelley_sockets_read (sock, (char*) &vaI8, sizeof (int8));
49 if (val8 != ADMIN_QUERY_DEVICE)
50 {

51 cout « "NEURAL N:ET: I am confused." « endl;
52 exit (1);

53 }

54 val8 = DEVICE_READY;
55 shelley_sockets_write (sock, (char*) &vaI8, sizeof (int8));
56
57 II now we can expect to receive neural net protocol commands
58 int8 command = NEURAL_NET_INIT_VALUE;
59
60 II loop in here until we're told to exit
61 while (command != ADMIN_DISCONNECT_DEVICE)
62 {

63 II block until we get the next command
64 if ((shelley_sockets_read (sock, (char*) &command, sizeof (int8))) -1)

65 exit (1);

66 else
67 {

68 II perform some action based on what the request is
69 switch (command)
70 {

71 case NEURAL_NET_CREATE:
72 II create a new network, given the dimensions
73
74 shelley_sockets_read (sock, (char*) &input , sizeof (int32));
75 shelley_sockets_read (sock, (char*) &hidden, sizeof (int32));
76 shelley_sockets_read (sock, (char*) &output, sizeof (int32));
77
78 neural_net = new bpnn (input, hidden, output);
79 neural_net->initialize (false, true, 0.0); II yes, it's hardcoded ...
80
81 II confirm that we received the data and that the network is created
82
83 val32 = 1;
84 val8 = NEURAL_NET_YES;
85 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));
86 shelley_sockets_write (sock, (char*) &vaI8, sizeof (int8));
87 break;
88
89 case NEURAL_NET_FEED_FORWARD:
90 II feed what is in the input layer through the network
91 neural_net->feedforward ();

61

....•

92
93 II confirm that we did apply feedforward
94 val32 = 1 j
95 val8 = NEURAL_NET_YESj
96 shelley_sockets_write (sock, (char.) &val32, sizeof (int32))j
97 shelley_sockets_write (sock, (char.) &val8, sizeof (int8))j
98 breakj
99
100 case NEURAL_NET_LOAD_INPUT_VECTOR:
101 II load the input vector
102 "data = new double [input] j
103 shelley_sockets_read (sock, (char.) data, sizeof (double) • input)j
104
105 for (int i = 0; i < inputj i++)
106 neural_net->load_input_value (i, data [i])j
107
108 delete (data) j
109
110 II confirm that we did load the input vector
111 val32 = 1;

112 val8 = NEURAL_NET_YESj

113 shelley_sockets_write (sock, (char.) &val32,

114 shelley_sockets_write (sock, (char.) &val8,

115 break;

116

117 case NEURAL_NET_LOAD_TARGET_VALUE:

118 II set the target values

sizeof (int32));
sizeof

119 shelley_sockets_read (sock, (char.) &val32, sizeof
120 shelley_sockets_read (sock, (char.) &value, sizeof
121
122 neural_net->load_target_value (val32, value)j
123
124 II confirm that we did load the target value
125 val32 = 1;
126 val8 = NEURAL_NET_YESj

(int8))j

(int32))j II index
(double)); II value

127 shelley_sockets_write (sock, (char.) &val32, sizeof (int32))j
128 shelley_sockets_write (sock, (char.) &val8, sizeof (int8));
129 breakj
130
131 case NEURAL_NET_TRAIN:
132 II train the network
133
134 neural_net->train (0.3, 0.3, &output_error, &hidden_error)j
135
136 II confirm that we did train the network
137 val32 = 1; II our response will be 1 byte
138 val8 = NEURAL_NET_YES;
139 shelley_sockets_write (sock, (char.) &val32, sizeof (int32))j

62

-
140 shelley_sockets_write (sock, (char.) &va18, sizeof
141 break;
142
143 case NEURAL_NET_GET_OUTPUT_VALUE:
144 II return the value of an output node
145 shelley_sockets_read (sock, (char.) &va132, sizeof
146 value = neural_net->get_output_value (va132);
147
148 II send back the value
149 va132 = sizeof (double);
150 shelley_sockets_write (sock, (char.) &va132, sizeof
151 shelley_sockets_write (sock, (char.) &value, sizeof
152
153 break;
154
155 case ADMIN_DISCONNECT_DEVICE:
156 II we should exit now
157 exit (0);
158 break;
159
160 } II switch
161
162 } II if
163
164 } I I while
165
166 } II main ()

(int8));

(int32)); II index

(int32));
(double));

63

-

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Appendix K NeuraLNet.H

/***
Andy Ritger

Research Honors

4-26-99

Neural_Net.H

The Neural_Net class is a wrapper for the SIE neural net API.

***/

#ifndef NEURAL_NET_WRAPPER _

#define NEURAL_NET_WRAPPER _

#include "sie_protocol.h"

#include "neural_net_protocol.h"

#include "shelley_sockets.h"

class Neural_Net

{

public:

Neural_Net (int sock_number);

-Neural_Net () {};

void feedforward ();

void load_input_vector (double* data);

void load_target_value (int32 index, double value);

void train ();

double get_output_value (int32 index);

private:

int sock;

bool error;

};

64

-

44

45 #endif

65

Appendix L NeuraLNet.C

•

1 1***
2 Andy Ritger
3 Research Honors
4 4-26-99
5
6 Neural_Net.C
7
8 ***1
9
10 #include "Neural_Net .H"
11
12
13
14 #define _SIZE_ 9612 II this is only a temporary fix - the number of inputs
15
16
17
18 Neural_Net::Neural_Net (int sock_number)
19 {
20 int8 val8;
21 int32 va132;
22
23 II initialize internal things
24
25 II we make the assumption that we
26 sock = sock_number;

27 error = false;

28

29 II what we're doing

30 val8 = AGENT_SEND_DEVICE;

have already connected to the admin

31 shelley_sockets_write (sock, (char*) &vaI8, sizeof (int8));
32
33 II to which device
34 val32 = 2;
35 shelley_sockets_write (sock, (char*) &va132, sizeof
36
37 II how long the message is
38 val32 = (sizeof (int8)) + (sizeof (int32) * 3);
39 shelley_sockets_write (sock, (char*) &va132 , sizeof
40
41 II the message (it's about time)
42 val8 = NEURAL_NET_CREATE;

(int32));

(int32));

43 shelley_sockets_write (sock, (char*) &vaI8, sizeof (int8));

66

•

44
45 va132 = _SIZE_; II input layer
46 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));
47
48
49

va132 = 4; II hidden layer
shelley_sockets_write (sock, (char*) &va132, sizeof (int32));

50
51 va132 = 4; II output layer
52 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));
53
54 II neural net returns a yes or no ...
55 shelley_sockets_read (sock, (char*) &va18, sizeof (int8));
56
57 } II constructor
58
59
60
61
62 void Neural_Net::feedforward ()
~ {
64 int8 va18;
65 int32 va132;
66
67 II what we're doing
68 va18 = AGENT_SEND_DEVICE;
69 shelley_sockets_write (sock, (char*) &va18, sizeof (int8));
W
71 II to which device
72 va132 = 2;
73 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));

~
75 II how long the message is
76 va132 = sizeof (int8);
77 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));
~

79 II the message (it's about time)
80 va18 = NEURAL_NET_FEED_FORWARD;
81 shelley_sockets_write (sock, (char*) &va18, sizeof (int8));
82
83 II neural net returns a yes or no ...
84 shelley_sockets_read (sock, (char*) &va18, sizeof (int8));
85
86 } II feedforward ()
87
88
89 void Neural_Net::load_input_vector (double* data)
00 {
91 int8 va18;

67

..

92 int32 va132;
93
94 II what we're doing
95 va18 = AGENT_SEND_DEVICE;
96 shelley_sockets_write (sock, (char.) &va18, sizeof (int8));
97
98 II to which device
99 va132 = 2;
100 shelley_sockets_write (sock, (char.) &va132, sizeof (int32));
101
102 II how long the message is
103 va132 = (sizeof (double) • _SIZE_) + (sizeof (int8));
104 shelley_sockets_write (sock, (char.) &va132, sizeof (int32));
105
106 II the message (it's about time)
107 va18 = NEURAL_NET_LOAD_INPUT_VECTOR;
108 shelley_sockets_write (sock, (char.) &va18, sizeof (int8));
109 shelley_sockets_write (sock, (char.) data, sizeof sizeof(double) • _SIZE_);
110
111 II neural net returns a yes or no ...
112 shelley_sockets_read (sock, (char.) &va18, sizeof (int8));
113
114 } II load_input_vector ()
115
116
117
118 void Neural_Net::load_target_value (int32 index, double value)
119 {
120 int8 va18;
121 int32 va132;
122

123 II what we're doing

124 va18 = AGENT_SEND_DEVICE;

125 shelley_sockets_write (sock,

126

127 II to which device

128 va132 = 2;

129 shelley_sockets_write (sock,

130

131 II how long the message is

132 va132 = (sizeof (double)) +

133 shelley_sockets_write (sock,

1~

(char.) &va18, sizeof (int8));

(char.) &va132, sizeof (int32));

(sizeof (int32)) + (sizeof (int8));
(char.) &va132 , sizeof (int32));

135 II the message (it's about time)
136 va18 = NEURAL_NET_LOAD_TARGET_VALUE;
137
138 shelley_sockets_write (sock, (char.) &va18, sizeof (int8)); II command
139 shelley_sockets_write (sock, (char.) &index, sizeof (int32)); II index

68

-
140 shelley_sackets_write (sock, (char*) &value, sizeof (double))j II value
141
142 II neural net returns a yes or no ...
143 shelley_sackets_read (sock, (char*) &val8, sizeof (int8))j
144
145 } II load_target_value ()
146
147
148
149
150 void Neural_Net::train ()
151 {
152 int8 val8j
153 int32 val32j
154
155 II what we're doing
156 val8 = AGENT_SEND_DEVICEj
157 shelley_sackets_write (sock, (char*) &val8, sizeof (int8))j
158
159 II to which device
160 val32 = 2j
161 shelley_sackets_write (sock, (char*) &val32, sizeof (int32))j
162
163 II how long the message is
164 val32 = sizeof (int8) j
165 shelley_sackets_write (sock, (char*) &val32, sizeof (int32))j
166
167 II the message (it's about time)
168 val8 = NEURAL_NET_TRAINj
169 shelley_sackets_write (sock, (char*) &val8, sizeof (int8))j
170
171 II neural net returns a yes or no ...
172 shelley_sackets_read (sock, (char*) &val8, sizeof (int8))j
173
174 } I I train 0
175
176
177
178 double Neural_Net::get_output_value (int32 index)
179 {
180 int8 val8j
181 int32 val32j
182
183 II what we're doing
184 val8 = AGENT_SEND_DEVICEj
185 shelley_sackets_write (sock, (char*) &val8, sizeof (int8))j
186
187 II to which device

69

..

188 val32 = 2;
189 shelley_sockets_write (sock, (char*) &val32, sizeof (int32));
190
191 II how long the message is
192 val32 = sizeof (int8) + sizeof (int32);
193 shelley_sockets_write (sock, (char*) &val32, sizeof (int32));
1~

195 II the message (it's about time)
196 val8 = NEURAL_NET_GET_OUTPUT_VALUE;
197 shelley_sockets_write (sock, (char*) &val8, sizeof
198 shelley_sockets_write (sock, (char*) &index, sizeof
199
200 double value;
201
202 II neural net returns double
203 shelley_sockets_read (sock, (char*) &value, sizeof
2~

205 return (value);

206

207 } II get_output_value ()

(int8));
(int32)); II index

(double));

70

Appendix M agent.C

•

1 1***
2 Andy Ritger
3 Research Honors
4 4-26-99
5
6 agent.C
7
8 This is an example agent which initially presents the user with options to:
9
10 [1] identify user
11 [2] capture frames to pgm
12 [3] train
13 [4] quit
14
15 Identifying the user (1) grabs a frame of video, feeds it into the input of
16 the neural network, and simply reports the output values.
17
18 Capturing frames of video to pgm (2) grabs X number of video frames, and
19 saves them as pgm images for future use in training.
20
21 Training (3) uses the pgm images and trains the network to recognize the
22 faces of the people in the pgms.
23
24
25
26 More important than the face recognition functionality that this agent
27 provides, this program demonstrates a simple example of using SIE and
28 how an agent should interact with the administrator and send requests to
29 devices.
30

31 ***1
32
33
34
35 #include <stdio.h>

36 #include <stdlib.h>

37 #include <iostream.h>

38 #include <fstream.h>

39

40 #include "s ie_protocol.h"

41 #include "shelley_sockets.h"

42 #include IFrame_Grabber.H"

43 #include INeural_Net.H"

71

•

44 #include "pgmlmage. H"
45
46
47
48 #define _SIZE_ 6912 II this is a temporary fix -­ the size of the network input
49
50
51
52 1***
53 Given a byte stream of data, writes a pgm image to disk.
54 ***1
55
56 void write_pgm_file (char* filename, unsigned char *data,
57 int width, int height)
58 {
59 II streams are better than file handlers
60
61 of stream *foobar;
62 foobar = new of stream (filename);
63
64 *foobar « "P2" « endl;
65 *foobar « width « " " « height « endl;
66 *foobar « "255" « endl;
67
68 for (int y = 0; y < height; y++)
69 {
70 for (int x = 0; x < width; x++)
71 *foobar « (int) data [(y * width) + x] « " ";
72 *foobar « endl;
73 }
74 foobar->close();
75 } II write_pgm_file ()
76
77
78
79 1***
80 Requests a frame of video, passes it to the input of the neural network,
81 and prints the resulting outputs of the network.
82 ***1
83
84 void identify (Frame_Grabber *grabber, Neural_Net *network)
85 {
86 II get the current dimensions of the frame
87 int size = grabber->get_width () * grabber->get_height ();
88
89 II allocate memory for the data
90 unsigned char *data = new unsigned char [size];
91 double *inputs = new double [size];

72

•

92
93 II allow the frame to be shown to the screen, and
94 grabber->enable_display ();
95 grabber->grab_frame (data);

96

97 II convert from chars to doubles 0.0 >= x > 1.0

98 for (int i = 0; i < size; i++)

99 inputs [i] = ((double) data [i]) I ((double) 256.0);

100
101 II feed the converted frame data into the network's inputs
102 network->load_input_vector (inputs);
103 network->feedforward ();
104
105 II print the results
106 for (int i = 0; i < 4; i++)
107 cout «" ["« i « "] = « network->get_output_value (i);II

108 cout « endl;
109
110 II disable the video display
111 grabber->disable_display ();
112
113 II free the memory that we allocated
114 delete (data);
115 delete (inputs);
116
117 } II identify ()
118
119
120

121 1***

122 Reads image.list and loads the specified images, training the network

123 to recognize each. For more details on the network is trained, see the

124 bpnn.H documentation, as well as documentation relating to the GNNV

125 project (www.iwu.edu/-shelley/gnnv).

126 ***1

127

128 void train (Neural_Net *network)

129 {

130 II load the images

131 pgmlmageList *list = new pgmlmageList (llimage .list") ;

132

133 cout « "number of epochs: ";

134 int max_epochs = 10;

135 cin » max_epochs;

136

137 int epoch;

138 double output_error, hidden_error, error_sumation;

139 int numcorrect = 0;

73

-
140 double sum_error = 0.0;
141 double value;
142 double *inputs = new double [_SIZE_];
143 pgmlmage *img;
144 double answers [4];
145 int index;
146
147 II for each epoch, we examine all the images in the image list
148 for (epoch = 0; epoch < max_epochs; epoch++)
149 {
150 numcorrect = 0:
151 for (int i = 0: i < list->numberOflmages (); i++)
152 {
153 img = list->getlmage (i);
154
155 II load the input vector
156 index = 0;
157 for (int j = 0; j < img->rows; j++)
158 for (int k = 0: k < img->cols: k++)
159 {
160 inputs [index] = «double) (img->getPixel (j, k))) I 256.0;
161 index++;
162 }
163
164 II feed the input data to the network

165 network->load_input_vector (inputs);

166

167 1* load the target vector*1

168

169 II start all targets low

170 network->load_target_value (0, 0.1):

171 network->load_target_value (1, 0.1);

172 network->load_target_value (2,0.1);

173 network->load_target_value (3, 0.1);

174
175 1*
176 For this test, we use the simple convention where the name of all
177 image for person 1 begin with the number 1. For example, a pgm
178 filename may be: 1.4.pgm, which means that it is picture number 4 for
179 person 1. This way, we can just look at the first character of the
180 name when we want to load the target vector.
181 *1
182

183 if (img->basefilename [0] == '0')

184 network->load_target_value (0, 0.9):

185 else if (img->basefilename [0] == '1')

186 network->load_target_value (1, 0.9);

187 else if (img->basefilename [0] == '2')

74

•

188 network->load_target_value (2, 0.9);
189 else if (img->basefilename [0] == '3')
190 network->load_target_value (3, 0.9);
191
192 I I train ...
193 network->train;
194
195 II count for ourselves
196 answers [0]
197 answers [1]
198 answers [2]
199 answers [3]
200

= network->get_output_value (0);
= network->get_output_value (1);
= network->get_output_value (2);
= network->get_output_value (3);

201 if ((img->basefilename [0] == '0') &&
202 (answers [0] > 0.5))
203 numcorrect++;
204
205 else if ((img->basefilename [0]
206 (answers [1] > 0.5))
207 numcorrect++;
208
209 else if ((img->basefilename [0]
210 (answers [2] < 0.5))
211 numcorrect++;
212
213 else if ((img->basefilename [0]
214 (answers [3] < 0.5))
215 numcorrect++;
216
217 } II each image
218
219 cout « "epoch: « epoch «II II

220
221 } II each epoch
222
223 II free all the memory we
224 delete (inputs);
225 delete (list);
226
227 } II train ()
228
229
230

endl;

231 1***
232 Here we grab frames of video, and send the data to the write_pgm_file ()
233 function to save it in pgm file format.
234 ***1
235

75

allocated

II « numcorrect « II «

== '1') &&

-- '2') &&

'3') &&

correct"

•

236 void capture_frames (Frame_Grabber *grabber)
237 {
238 II get the user's number (0-3)
239 cout « "please enter your number [0-3]: ";
240 int name;
241 cin » name;
242
243 II get the number of frames to grab (which is how many pgms will be saved)
244 cout « "please enter the number of frames to grab: ";
245 int frames;
246 cin » frames;
247
248 char filename [50];
249
250 II this is where we put the frames
251 unsigned char *data = (unsigned char *) malloc (grabber->get_width () *
252 grabber->get_height ());
253
254 I I enable the video display of the grabbed frame
255 grabber->enable_display ();
256
257 II for each frame we want to grab
258 for (int i = 0; i < frames; i++)
259 {
260 II get the data
261 grabber->grab_frame (data);
262
263 I I make the filename
264 sprintf (filename, "images/%d.%d.pgm", name, i);

265
266 II send the data off to be written to disk
267 write_pgm_file (filename, data, grabber->get_width (),
268 grabber->get_height ());
269
270 I I pause for 1 second
271 sleep (1);
272 }
273
274 I I disable the display
275 grabber->disable_display ();
276
277 II free the memory that we allocated
278 free (data);
279
280 } I I capture frames
281
282
283

76

•

284 1***
285 main 0
286 ***1
287
288 int main (int argc, char **argv)
289 {
290 II connect to the administrator; sock is the socket identifier
291 int sock = shelley_sockets_client_connect_to_server (2048, "localhost");
292
293 II tell the administrator that we're an agent
294 int8 val = AGENT_CONNECT;
295 shelley_sockets_write (sock, (char*) &val, sizeof (int8));
296
297 II this is the administrator telling us that he is an administrator
298 shelley_sockets_read (sock, (char*) &val, sizeof (int8));
299
300 II request devices ...
301
302 val = AGENT_DEVICE_REQUEST;
303 shelley_sockets_write (sock, (char*) &val, sizeof (int8))j
304 int32 val32 = 1; II request frame grabber
305 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));
306
307 II eventually we'll need to listen for a response
308
309 val = AGENT_DEVICE_REQUEST;
310 shelley_sockets_write (sock, (char*) &val, sizeof (int8));

311 val32 = 2; II request neural net

312 shelley_sockets_write (sock, (char*) &va132, sizeof (int32));

313

314 II eventually we'll need to listen for a response

315

316 II tell the administrator we're done requesting devices

317 val = AGENT_DEVICE_REQUEST_DONE;

318 shelley_sockets_write (sock, (char*) &val, sizeof (int8));

319

320 I I talk to the frame grabber

321 Frame_Grabber *grabber = new Frame_Grabber (sock);

322 int width, height;

323 width = grabber->get_width ();

324 height = grabber->get_height ();

325 cout « "Initial frame dimensions are
 11

326 « width « x 11 « height11

327 « endl;

328 grabber->set_scale_factor (0.15);

329 width = grabber->get_width ();

330 height = grabber->get_height ();

331 cout « "Frames resized to
 11

77

-
332 « width « x II « heightII

333 « endl;
334
335 II talk to the neural network
336 Neural_Net *network = new Neural_Net (sock);
337
338 II present the user with our menu
339 int choice = 0;
340
341 while (choice != 4)

342 {

343 printf (" [1] identify user\n");

344 printf (" [2] capture frames to pgm\n");

345 printf ("[3] train\n");

346 printf (" [4] quit\n");

347
348 cout « "choice: ";
349 cin » choice;
350
351 if (choice == 1)
352 identify (grabber, network);
353
354 else if (choice == 2)
355 capture_frames (grabber);
356
357 else if (choice == 3)
358 train (network);

359 }

360

361 II disconnect from the administrator

362 val = AGENT_DISCONNECT;

363 shelley_sockets_write (sock, (char*) &val, sizeof (int8));

364

365 } II main ()

78

1
2
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Appendix N Makefile

Andy Ritger

Research Hono~s

4-26-99

Makefile for demonstation of SIE

CC = g++
LIBS = -lsocket -lnsl
XILHOME = /opt/SUNWits/Graphics-sw/xil
CFLAGS = -I$(OPENWINHOME)/include
XILLIBS = -L$(XILHOME)/lib -L$(OPENWINHOME)/lib\

-lxil -lX11 -ldl -ldga -1m -lthread\
-R $(XILHOME)/lib:/usr/openwin/lib\

-lsocket -lnsl

all:	 administrator agent frame_grabber neural_net

clean:
rm -f core *.0 *­

administrator:	 administrator.c sie_protocol.h
$(CC) $(LIBS) administrator.c -0 administrator

agent:	 agent.C shelley_sockets.o Frame_Grabber.o \
Neural_Net.o sie_protocol.h pgmlmage.o
$(CC) $(LIBS) shelley_sockets.o agent.C \
Frame_Grabber.o Neural_Net.o pgmlmage.o -0 $~

frame_grabber:	 frame_grabber.o shelley_sockets.o
$(CC) $(XILLIBS) frame_grabber.o \
shelley_sockets.o -0 $~

neural_net.C neural_net_protocol.h bpnn.o \

shelley_sockets.o

$(CC) $(LIBS) neural_net.C bpnn.o \

shelley_sockets.o -0 $~

shelley_sockets.o:	 shelley_sockets.c shelley_sockets.h

$(CC) -c $<

frame_grabber.o:	 frame_grabber.c frame_grabber_protocol.h sie_protocol.h
$(CC) $(CFLAGS) -c $<

79

44 Frame_Grabber.o:

45

46

47

48

49

50 bpnn.o:

51

52

53 pgmlmage.o:

54

•

Frame_Grabber.C Frame_Grabber.H
$(CC) $(CFLAGS) -c $<

Neural_Net.C Neural_Net.H
$(CC) $(CFLAGS) -c $<

bpnn.C bpnn.H
$(CC) $< -c

pgmlmage.C pgmlmage.H
$(CC) $< -c

80

References

[1]	 Stuart Russell and Peter Norvig, Artificial Intelligence, A Modern Approach (Prentice-Hall
1995).

[2]	 Illinois Wesleyan Intelligence Network on Knowledge, member Cognitive Science Consortium.
http://www.iwu/edu/-Ishapiro/wink.html

[3]	 Abraham Silberschatz and Peter B. Galvin, Operating System Concepts (Addison-Wesley
1995).

[4]	 Graham Glass, Unix for Programmers and Users (Prentice Hall 1993).

[5]	 W. Richard Stevens, TCPlIP Illustrated, Vol. 1: The Protocols (Addison-Wesley 1994).

[6]	 W. Richard Stevens, Unix Network Programming: Interprocess Communications Vol. 2, Second
Edition (Prentice Hall 1999).

[7]	 Douglas Gage, Network Protocols for Mobile Robot Systems, SPIE Mobile Robots XII, Pitts­
burgh, PA (October 1997).

[8]	 Bjarne Stroustrup, AT&T Labs, The C++ Programming Language, 3rd Edition (Addison­
Wesley 1997).

[9]	 Joseph L. Jones and Anita M. Flynn, Mobile Robots, Inspiration to Implementation (A K
Peters 1993).

[10]	 Rodney A. Brooks, Elephants Don't Play Chess, Robotics and Autonomous Systems 6 (MIT
Press 1990).

[ll]	 Tom M. Mitchell, Machine Learning (McGraw-Hill 1997).

81

-
Acknowledgements

This project was made possible in part by the IWU Mellon Center, Instructional Technology
Grant in support of IWINK/The SHELLEY RESEARCH GROUP. I would like to extend a special
thanks to The SHELLEY RESEARCH GROUP, the faculty members of my research hearing committee,
and especially Dr. Lionel Shapiro for all their advice and support during the course of this research.

82

	Designing an Integrated Environment for Artificial Intelligence
	Recommended Citation

	tmp.1222379933.pdf.7rrQL

