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This report is for the Senior Research Honors. 

Abstract 

Like the Fourier Transform, the Wavelet Transform decomposes signals 
as a superposition of simple units from which the original signals can be re
constructed. The Fourier Transform decomposes signals into sine and cosine 
functions of different frequencies, while the Wavelet Transform decomposes 
signals into wavelets. Since the Fourier Transform is a global integration 
transform and there is no time factor in it, it cannot effectively analyze non
stationary signals whose statistical properties change with time. In order to 
analyze nonstationary signals, we need to decompose signals into units that 
are localized in both the time and frequency domains. Using the Wavelet 
Transform with the B-wavelet, we wrote a program package in Mathemat
ica to implement the decomposition and reconstruction algorithms for signal 
processing. A data acquisition system developed in another project is used 
to acquire both the synthesized signals and real voice signals. Application of 
the Wavelet Transform on these signals will be presented. 

1This research is supported by a Grant-in-Aid of Research from Sigma Xi, The Scientific 
Research Society 



1 Introduction 

The Fourier Transform is widely used in science and engineering to 
analyze and process signals. It is a global integral transformation of the 
form: 

(1) 

which decomposes the original signal into sine and cosine signal units of 
different frequencies. These units of signal axe easier to analyze and process 
than the original complex signal. The Fourier Transform has been a powerful 
tool for scientists and engineers with the technique of Fast Fourier Transform 
(FFT.) But it is most effective in analyzing narrow-band stationary signals 
because of its global integration on the time axis. In order to analyze wide
band non-stationary signals, the windowed Short Time Fourier Transform 
(STFT) is used. 

+00 . I
STFT(r, f) = -00 x(t)g*(t - r)e~J21l" tdt, (2) 

/ 

where g*(t - r) is the complex conjugate of the shifted version of g(t), a 
window function whose length is preset. With the window function, we can 
either get high time resolution and poor frequency resolution by setting a 
small window length, or high frequency resolution and poor time resolution 
by setting a large window length, but not both. Scientists have developed 
various techniques to overcome this difficulty, such as the use of the ambiguity 
function, filter banks, pyramidal decomposition, multiresolution analysis; etc. 
Recent studies [1, 2, 3] have found that all these different techniques can be 
unified under the wavelet theory. The basic Wavelet Transform has the 
following form: 

! (t - b)Wz(a,b) =.;a1 ?/J -a- x(t)dt, (3) 

where ?/J(t) is a mother wavelet function. It acts as a window function to 
localize the integration. Notice that ?/J (t~b) is a dilated and shifted version 
of the mother wavelet function; a is the dilation factor and b is the translation 
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factor. In the Wavelet Transform, a one dimensional signal x(t) is mapped 
to a two dimensional function Wz(a, b). 

Both STFT and WT map a one dimensional signal to a two dimensional 
function, and both of them are integral transforms, but they are significantly 
different. STFT is a time-frequency transformation. Because its window size 
is fixed, its frequency resolution is fixed across the whole spectrum. While a 
10 Hz resolution is suitable at a high frequency of 40 KHz, it is unacceptable 
at a low frequency of 20 Hz. In order to extract different information from the 
original signal, one needs to run STFT several times with different window 
sizes. We use a microscope to examine details and a telescope to see land
scape. In this sense, the Wavelet Transform is a microscope and telescope 
in one; that is, it is adaptive to the different frequency components of the 
signal. Since the window function 'I/J ( Z~b) is a dilated and shifted version of 
the same mother wavelet function, it has constant relative resolution across 
all scales. It extracts information of all scales by doing one transformation. 
The local, detail characteristics of the signal are preserved in the small scale 
part of the transformation coefficients, and the global characteristics of the 
signal are stored in the large scale part of the transformation coefficients. 
Because of the adaptive window size, it is possible to get all the relevant 
information of all scales in one transformation. 

Another way to look at the differences between STFT and WT is by 
using the correlation (or ambiguity) functions. In cross-correlation analysis, 
we define: 

1
+00 

C(r) = f(t)g(t - r)dt (4)-00 

The value C(r) is a measure of the similarity of the two functions: f(t) 
and a shifted version of g(t). A large value of C(r) at r means that g(t) shifted 
by r is a good approximation to f(t). If f(t) and g(t) are inherently unsimilar, 
no matter what r value is chosen, g(t) will always be a "bad" approximation. 
In the Fourier Transform, similarities are evaluated when the original signal 
is compared to sine and cosine functions of different frequencies. Sine and 
cosine functions are global functions. If the signal has the same property, 
e.g., if the signal is a narrow-band stationary signal, the Fourier Transform 
is an efficient representation. But if the original signal contains transient 
components, the Fourier Transform fails to represent these local events, since 
the local information is spread out. Using the Wavelet Transform, the local 
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transient component can be matched by the small scale version of the mother 
wavelet, and the global component of the signal can be matched by the large 
scale version of the mother wavelet; thus a good similarity can be expected. 

In this report, we summarize the theoretical foundations of the Discrete 
Wavelet Transformation with B-wavelet and apply them to solve real world 
problems. Some of the questions we need to discuss are: 

• What function can be considered as a mother wavelet? 

• What kind of signals can be analyzed by the Wavelet Transform? 

• Is the Wavelet Transform unique? 

• How does one calculate a Wavelet Transform? 

• Is there an Inverse Wavelet Transform? And how to calculate it? 

We will present some .results of Daubechies [4], Mallat [5), Chan and 
Chui [6], and He [7] in the next section, followed by an implementation of 
the algorithm in a Mathematica Package. In Section 3, we discuss how to 
program the algorithm in Mathematica and Section 4 gives an application of 
the Discrete Wavelet Transform with B-wavelets on analysis of synthesized 
signals. 

2 Theoretical Foundations 

2.1 Wavelet and Multiresolution Analysis 

The Wavelet Transform introduced in Section 1 is also called the Contin
uous Wavelet Transform (CWT). Another approach is the Discrete Wavelet 
Transform (nWT), where the transformation is calculated only over a dis
crete grid of a and b. A convenient way to make the dilation factor a of 
the transformation discrete is to consider a = 2-; where j E Z, and the 
translation factor is adjusted accordingly, b = 2-;k where j, k E Z. Thus 

DWTz(j,k) = /2J J'l/J(2;t - k)x(t)dt = /2J J'l/J;,k(t)x(t)dt, (5) 
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where 
j?/J(2 t - k) = ?/Jj,k(t) 

This DWT definition leads to a multiresolution analysis of the signal. 
Let us consider signals in L2 (~) space (Le. finite energy signals.) First we 
use functions in a well understood subspace Vo to approximate it. Then we 
construct a sequence of subspaces (V2j )jEZ with the following properties: 

V2j C V2i+1, Vj E Z (6) 

x(t) E V2j <==> x(2t) E V2i+1, Vj E Z (7) 
+00 

U V2j - L2(~) (8) 
j=-oo 

+00 n V2j - ¢J (9) 
j=-oo 

Since this sequence of spaces (V2 j )jEZ are the coarser version of the 
previous one, the orthogonal complement space of V2j in V2i+1 can be char
acterized by the W2j space: 

(10) 

Thus the first approximation functional space Vo can be decomposed as 
the following:

/ :2-'/ :2-' / :2--" / :2-'
 
"0 • V2-1 -- V2-2 • V2-a+l -- V2-a 

To find a set of bases of these functional spaces is the first step in mul
tiresolution analysis of signals. The following theorems prove that under 
certain conditions there exists a scaling junction ¢J(t) and a mother wavelet 
junction ?/J(t), whose dilations and translations form the bases of the func
tional spaces (V2 j )jEZ and (W2 j )jEZ respectively. They also show how the 
scaling function and the mother wavelet function can be constructed. 
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Theorem 1 (Existence of the Scaling Function) 
Let (V2i )iEZ be a multiresolution approximation of L2 (lR). There exists 

a unique function ¢(t) E L2 (lR), called a scaling function, such that if we set 
¢i,k (t) = ¢(2i t - k), for (j, k) E Z2, then: 

(J2J¢i,k(t))kEZ is an orthonormal basis ofV2i. 

Theorem 2 (Construction of a Scaling Function) 
Let ¢(t) be a scaling function, and let H be a discrete filter with impulse 

response h(n)=< ¢-l,O(U),¢O,n(u) > , let H(w) be the Fourier Transform 
defined by: 

+00 
H(w) = L h(n)e-inw 

n=-oo 

H(w) satisfies the following two properties: 

1. H(O)=1 and h(n)=O(n-2) at infinity; 

22. I H(w) I? + I H(w + 71") 1=1 

Conversely, let H(w) be a Fourier Transform satisfying (1) and (2), and such 
that IH(w) 1# 0 for w E [0, ~]. 

The function defined by 

+00 
¢(w) = II H(2-Pw) 

p=l 

is the Fourier Transform of a scaling function. 

Theorem 3 (Existence and Construction of a Wavelet Function)
 
Let t/J(t) be a function whose Fourier Transform is given by:
 

with G(w)=e-iwH*(w + 71"), Then: 

(J2Jt/Ji,k(t)) kEZ is an orthonormal basis of W 2i 

( J2Jt/Ji k(t)) is an orthonormal basis of L2 (lR) 
, (j,k)EZ2 
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Based on the above theorems, if the original approximation space Vo 
can be multiresolution decomposed, we can find a scaling function and a 
mother wavelet function whose dilation and translation form the bases of the 
(V2j )jEZ and (W2 j )jEZ respectively. Thus we can approximate the original 
signal with a linear combination of these bases. 

A.	 Approximate a signal at a resolution 2i 

Let 
+00 

A2jx = 2-i L < x(u),lj)j,n(u) > lj)j,n(t), (11) 
n=-oo 

where
 
A~j(x,n) =< x(u),lj)i,n(u) >,n E Z
 

are called Discrete approximation coefficients.
 

Also, we can express the signal components in W2j space using the
 
bases in W2j as the following:
 

+00 
D2jx =2-i L < x(u), "pi,n(u) > "pi,n(t), (12) 

n=-oo 

where
 
Dgj(x,n) =< x(u),,,pi,n(u) >,n E Z
 

are called Discrete detail signal coefficients.
 

B. Iterative algorithms for calculating discrete coefficients 

Decomposition
 

+00
 
d " - dA2j (x, n) = LJ h(2n - k)A2H1 (X, k), (13) 

k=-oo 

+00 
Dgj(x, n) = L g(2n - k)AgHl(X, k), (14) 

k=-oo 

where 
hen) =< lj)-l,O(U),lj)O,n(U) >,h(n) = h(-n), 

g(n) =< "p-l,O(u), "pO,n(U) >, g(n) = g( -n). 

See Appendix A for detailed deduction of the formula. 
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Figure 1: Second order B-spline function ¢(x). 

Reconstruction 

+00 +00 
A~i+1(x,n) =2 L h(n-2k)Agi(x,k)+2 L g(n-2k)D;i(X,k). 

~-oo ~-oo 

(15) 

2.2 B-Spline and B-Wavelet 

We will now apply the basic theories in Section 2.1 to a special set of 
functions called B-spline functions. The second order B-spline function (see 
Figure 1) is defined as: 

to < t < 1; 
¢(t) = 2 - t 1 ~ t ~ 2; (16)

{ o otherwise. 

And the higher order B-spline is the convolution from the lower order 
B-spline function. 

According to their definitions, B-spline functions have the following 
property: 
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Figure 2: Second order B-wavelet function 'IjJ(x). 

+00 
¢(t) = L p'::¢(2t - n) (17) 

n=-oo 

where m is the order of the B-spline function (in this report m=2), and p~ 

is defined as the following: 

2-(m+l) ( 0m) < n < m'P':: = n - - , (18)
{ o otherwise, 

This property means that the functional spaces spanned by the B-spline 
functions satisfy the multiresolution decomposition requirements of (V2 j )jEZ, 

So we can use a B-spline function as a scaling function. The corresponding 
B-wavelet function (see Figure 2) has the form: 

+00 
'IjJ(t) = L q'::¢(2t - n); (19) 

n=-oo 

where 

~11; ~T=o ( 7)<P2m(n - j + 1) 0 ~ n ~ 3m - 2; (20), 
o otherwise. 
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When using B-wavelet, although they form the bases of the space and they 
are orthogonal across different resolution levels, they are not orthogonal in 
the same level. While we use B-wavelet to decompose the signal and get the 
decomposition coefficients, we need to introduce another function called dual 
B-wavelet to reconstruct the original signal from these wavelet coefficients. 
The dual B-wavelet {b(t) is defined by the following: 

J
+oo 

. -00 1/;(t - j)1/;(t - l)dt =6j /. (21)
 

Hence 
+00 +00 

x(t) = I: I: dj,k1/;j,k(t) , (22) 
k=-ooj=-oo 

where 
dj,k = 2j < !, {bj,k > . 

The approximation and decomposition formula using B-wavelet are the 
following: . 

0 

x(t) :::::::: X20 (t) 
- g2-1(t) + X2-1(t)
 

- g2-1(t) + g2-'J(t) + X2-'J(t) (23)
 

-

where 

+00 
X2- i (t) = k=~oo Cj,k¢j,k(t) , 

(24)+00 
{ g2-i(t) = E dj,k1/;j,k(t).

k=-oo 
And the coefficients have the following relationships: 

(25) 
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where {an} and {bn} are computed from: 

+00 +00 
</>(2x - I) = L a,-2n</>(X - n) + L b,- 2n'l/J(X - n). (26) 

n=-oo	 n=-oo 

The reconstruction formula uses the {p~} and {q~} sequences defined 
above and the formula is the following: 

+00 
cj+l,k = L (Pk-2ncj,n + Qk-2ndj,n) (27) 

n=-oo 

Both {an} and {bn} are infinite sequences and their computation re
quires much efforts. But these filter sequences need to be computed only 
once. They depend only upon the selection of the scaling function and do 
not depend upon the signals we need to analyze. Also, {an} and {bn} decay 
quite fast and we can chop off to get finite sequences. 

3 Programming in Mathematica 

3.1 Advantages of Programming in Mathematica 

Mathematica is a sophisticated mathematics software package especially 
good at symbolic manipulation of math forms. But it is also a programming 
language. Programming in Mathematica has several advantages: 

• We do not need to reinvent the wheel.	 Mathematica has abundant 
built-in math functions and list operation commands. They are care
fully optimized. It is especially suitable for computational intensive 
problems. 

•	 It has convenient "plot" and "sound" commands to visualize and hear 
the results immediately. 

•	 It supports both procedural and functional programming style. In 
procedural programming, we use flow control commands to tell com
puter how to carry out the task step by step. In contrast, functional 
programming let us concentrate on what need to be done and let the 
computer to figure out how to carry out the tasks. 

10 
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•	 We can use interactive mode to see the intermediate results instantly. 
And it is easy to group these interactive commands into a package that 
can be used later as an extension of the built-in packages. 

3.2 Build a Mathematica Package 

Mathematica has a rich set of built-in packages. End user simply type 
the command << packagename to load a package and all the special func
tions programmed in the package are available to the user. The implemen
tation details are transparent to the user but the user can get help on the 
usage of the package. 

When we have a set of interactive commands to carry out certain task, 
we can use the following steps to convert this set of commands into a Mathe
matica package. Please refer to Appendix B for code listing of the package. 
The following is the skeleton of a package: 

BeginPackage["PacakgeName'"] 
Needs ["OtherPackage'U] 

FunctionName::usage="Help message on how to use this function." 

Begin["'Private'"] 

FunctionName[clist_] :=
 
Block[
 

Actual implementation of the function
 
] 

End[]
 
EndPackage []
 

We built our package in the following steps: 

11 
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1.	 We first utilize the interactive nature of the Mathematica to carry out 
commands line by line to see each intermediate result. In this step, we 
want to make sure that each command works properly. 

2.	 Then we put all the commands in a file and add a set of commands: 
BeginPackage [IIMultiResolution' II ] and EndPackage [] to create a 
"box" to hold the whole package. What they do is to change the 
$Context from Global' to a new variable name based on the name of 
the package. 

3. The actual implementation of the functions are further encapsulated 
by the commands:Begin [IIPrivate' "] and End []. The part that is 
included by these two commands, is not accessible out of the pack
age. This makes the implementation of the specific algorithm local and 
avoids the accidental corruption of the program by outer functions. 

4.	 The wavelet and B-spline function definitions are given in a separate file 
namedWDefinition.m. This file is loaded automatically into Mathe
matica by putting the command Needs ["WDefinition' "] at the be
ginning of the package. 

5.	 The online help message is added to the package before the command 
Begin [IIPrivate' "], so that it is accessible by the user. 

6.	 Finally, the package is saved as Wavelet.m and it is put into the 
right directory that is included in $Path. In our case, it is put in 
iLibrary/Mathematica/Packages. 

Application of the Wavelet Transform to 
Signal Analysis 

The Wavelet Transform has been used in a variety aspects, such as image 
coding [5], singularity detection [1], digital filtering [2], speech processing 
[9],etc. We are trying to use the B-wavelet transform on pitch detection of 
speech signals. Because of the complication of the problem, the application 
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details will be presented in a later article [8]. In this section we will show the 
validity of the approach and several test examples. 

The pitch of the sound signal is its instant frequency. Detection of pitch 
change of a sound signal has applications in speech recognition and clini
cal diagnosis. Due to the large blocks of data that are needed to represent 
a meaningful section of the sound signal at high sample rate, we are still 
searching for effective ways to process it. The following five figures are the 
results of several simple test signals to show the validity of the approach. 
We decompose the original signals into subspace representations and recon
struct the original signals back from these subspace representations using 
the Mathematica package described in the previous section. Through this 
decomposition and reconstruction scheme, it is possible to process each set 
of coefficients individually to extract the information which is not accessible 
before. 

In all the graphs, (a) is the original signal. (b) and (c) are the first level 
decomposition coefficients inV and W spaces respectively. (d) and (e) are the 
further decomposition of (b) into coarser V and W spaces, and so are (f) and 
(g) the decomposition coefficients of (d). (a') is the reconstruction of signal 
from coefficients in (b) and (c), since we did not make further manipulations 
on (b) and (c), (a') should be the same as (a). Also (b') is the reconstruction 
of (b) from (d) and (e). 

The first one (see Figure 3) is a multiresolution decomposition of a pure 
sine wave. After each step of decomposition, the signal length is halved. 
Since we provide a pure sine wave, the coefficients in V2j subspaces are very 
regular and similar to the original signal. The coefficients in W 2j subspaces 
are significantly smaller compared to their V2j counterparts. The coefficients 
of W2 j subspaces in the boundary regions are relatively larger compared to 
the inner part of the coefficients. 

The second one (see Figure 4) is a demonstration of the reconstruction 
algorithm using a pure chirp signal. We can compare (a) with (a') and (b) 
with (b'). Since we did not make further processing on coefficients of the 
individual levels, the original signal is reconstructed back as expected. Also 
notice the similarity of the overall shapes of the coefficients in different V2j 

subspaces in this example. 
Figure 5 shows us that the Wavelet Transform can do similar "tricks" 

that the Fourier Transform can. Here we superimpose a pure sine wave with 
a white noise signal. Since their spectrum are separated, it is quite easy 
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to filter out the signal using the Fourier Transform. As we can see in this 
example, the Wavelet Transform also can separate the signal from the noise. 

If the spectra of the signal and the noise are strongly overlapped, the 
Fourier Transform is not able to differentiate them. Figure 6 shows a chirp 
signal superimposed with white noise, both have a wide spectrum. In the 
Fourier transform result, we can only know that the signal includes a whole 
spectrum of different frequency components. But no time information on 
how the signal changes is evident from the spectrum. The result on autocor
relation analysis cannot give us useful information on the transition either. 
In Figure 7, the Wavelet Transform is used to analyze the same signal. It 
is clear that after only three steps of decomposition, the coefficients of these 
different subspaces reveal far more information of the original signal than the 
previous methods can. 

To summarize, we find that the Wavelet Transform can be used to an
alyze stationary signals. These signals can be analyzed successfully by the 
Fourier Transform, the Wavelet Transform gives us an alternative view. The 
Wavelet Transform can effectively analyze nonstationary signals and shows 
superior performance than the Fourier Transform and the autocorrelation 
analysis. 
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Figure 3: Multiresolution Decomposition of Pure Sine Function 
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4. Result from the Autocorrelation Analysis 

Figure 6: Analysis of the Chirp Signal with White Noise
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Appendix A 

Decomposition and Reconstruction Algorithms 

A Decomposition 

+00 
4Jj,n(t) = 2-(i+1

) L: < 4Jj,n(U),4Ji+l,k(U) > 4Ji+l,k(t). (28) 
k=-oo 

By changing variables in the inner product integral, we have 

(29) 

Thus 

< x(u),4Jj,n(u) > 
+00
L: < 4J-l,O(U),4JO,(k-2n)(U) > . < x(U),4Ji+l,k(U) > 

k=-oo 

+00
L h(2n - k) < x(U),4Ji+l,k(U) >, (30) 

k=-oo 

where h(n) = h(-n) and h(n) =< 4J-l,O(U),4Jo,n(u) >. Therefore 

(31) 

Similarly, 
+00 

Dgj(n) = L g(2n - k)Dgi+1(k), (32) 
k=-oo 

where
 
g(n) = g( -n) and g(n) =< tP-l,O(U), tPO,n(u) > .
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o 

B Reconstruction
 

+00 
2-j L < ¢j,k(u), ¢j+l,n(u) > ¢j,k(t) 

k=-oo 

+00 
+ 2-j L < tPj,k(U),¢j+l,n(U) > tPj,k(t). (33) 

k=-oo 

Therefore 

< x(U),¢j+I,n(U) > (34) 
+00 +00 

- 2 L h(n - 2k) < x(U),¢j,k(U) > +2 L g(n - 2k) < x(u), tPj,k(U) > . 
~-oo ~-oo 

Hence we have 

+00 +00 
A~j+l(n) =2 L h(n - 2k)A~j(k) + 2 L g(n - 2k)D~j(k). (35) 

k=-oo k=-oo 
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Appendix B 

Code List of the Package 

This Appendix includes the program code list of the package. It has 
two files: WaveletPackage.m and WDefinition.m. Detailed tutorial of 
Mathematica programming can be found in the book by Roman Maeder [10]. 

Y. WaveletPackage.m 
BeginPackage[IIMultiResolution CII] 
Needs [IIWDefinition CII] 

CDecomposition: :usage=IICDecomposition [c_List] compute the 
multiresolution coefficients Ci of the subsequent 
level. II 

DDecomposition: :usage=IIDDecomposition Cd_List] compute the 
multiresolution coefficients Di of the subsequent 
level. II 

Reconstruction: :usage=IIResconstructon[c_List,d_List] 
reconstructs the multiresolution coefficients of 
the upper level by the coefficients Ci and Di of 
the lower level. 1I 

Begin [II CPrivate C "]
 

CDecomposition[clist_]:=
 
Block[{appl={},app2={},c={},cc={},l=O},
 

l=Length[clist];
 
appl=Take[clist,21];
 
app2=Take[clist,-20];
 
c=Join[app2,clist,appl];
 
For[j=l,j<=1/2,j++,
 

AppendTo[cc,Sum[NA2[[n]]*c[[n+2j-2]] , 
{n,l,41}]]] ; 

cc 
] 
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DDecomposition[clist_]:= 
Block[{bppl={},bpp2={},d={},dd={},l=O}, 

l=Length[clist] ; 
bppl=Take[clist,21]; 
bpp2=Take[clist,-20]; 
d=Join[bpp2,clist,bppl]; 
For[j=l,j<=1/2,j++, 

AppendTo[dd,Sum[NB2[[n]]*d[[n+2j-2]] , 
{n ,1, 41}]]] ; 

dd 
] 

Reconstruction[cc_,dd_] := 
Block[{c={},d={},ac={},ad={},clist={},l=O}, 

l=Length[cc]; 
ac=Take [cc, -1] ; 
ad;:Take[dd,-2]; 
c=Join[ac,cc]; 
d=Join[ad,dd] ; 
c=Partition[c,l] ; 
d=Partition[d,l] ; 
c=Map[{#,O}&:,c]; 
d=Map[{#,O}&:,d]; 
c=Flatten[c]; 
d=Flatten Ed] ; 
For[j=l,j<=2 l,j++, 

AppendTo[clist, 
Sum[NP2[[n]]*c[[n+j-l]] ,{n,l,3}]+ 
Sum[NQ2[[n]]*d[[n+j-l]],{n,l,5}] ] 

]; (* End For *)
 
clist
 

]
 

End[] 
EndPackage [] 
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it WDefinition.m 
it This is the support part of the package. It includes scale 
it and wavelet functions definitions and decomposition, 
it reconstruction coefficients 

BeginPackage[IIWDefinition C II] 

phi2[x_] :=Which[0<x<1,x, 1<=x<2, 2-x,True,O]
 

casi2[x_] :=1/12(phi2[2x]-6phi2[2x-1]+10phi2[2x-2]
 
-6phi2[2x-3]+phi2[2x-4])
 

h1[x_] :=1/6 xA3;
 
h2[x_] :=2/3 (X-1)A3+2(2-x) (X-1)A2+(2-x)A2(x-1)+1/6(2-x)A3;
 
h3[x_] :=1/6(x-2)A3+(x-2)A2(3-x)+2(x-2) (3-X)A2+2/3(3-x)A3;
 
h4[x_] :=1/6(4-x)A3;
 
phi4[x_] :=Which[0<x<=1,h1[x] ,1<x<=2,h2[x],2<x<=3,h3[x],
 

3<x<=4,h4[x],True,O] 

casi4[x_] :=1/(8*5040) (phi4[2x]-124 phi4[2x-1]+1167 phi4[2x-2] 
- 7904 phi4[2x-3] + 18482 phi4[2x-4] - 24264 phi4[2x-5] 
+ 18482 phi4[2x-6] - 7904 phi4[2x-7] + 1167 phi4[2x-8] 
- 124 phi4[2x-9] + phi4[2x-10] ) 

NP2={0.5,1,O.5}; 

NQ2={1/12,-1/2,5/6,-1/2,1/12}; 

NA2= 

{8.26079*10A-7, -(2.256905*10A-6), -(3.08299*10 A-6),
 
8.422897*10 A-6, 0.000011505891, -0.000031434679,
 
-0.00004294056900000001, 0.000117315818,
 
0.000160256388, -0.000437828595,
 
-0.0005980849830000001, 0.001633998562, 0.002232083545,
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-0.006098165652, -0.008330249198, 0.022758664048, 
0.031088913246, -0.084936490539, -0.116025403784, 
0.316987298108, 0.6830127018920001, 0.316987298108, 
-0.116025403784, -0.084936490539, 0.031088913246, 
0.022758664048, -0.008330249198, -0.006098165652, 
0.002232083545, 0.001633998562, -0.0005980849830000001, 
-0.000437828595, 0.000160256388, 0.000117315818, 
-0.00004294056900000001, -0.000031434679, 
0.000011505891, 8.422897*10~-6, -(3.08299*10~-6), 

-(2.256905*10~-6), 8.26079*10~-7}; 

NB2= 

{O.O, 0.0, 2.2569054*10~-6, -(6.165980000000001*10~-6), 

-(8.422897*10~-6), 0.000023011782, 0.000031434678, 
-0.00008S881139, -0.000117315818, 0.000320512777, 
0.000437828595, -0.001196169967, -0.001633998561, 
0.004464167091000001, 0.006098165652, -0.016660498395, 
-0.022758664047, 0.06217782649100001, 0.084936490539, 
-0.232050807569, -0.316987298108, 
0.866025403784, -0.316987298108, -0.232050807569, 
0.084936490539, 0.06217782649100001, -0.022758664047, 
-0.016660498395, 0.006098165652, 0.004464167091000001, 
-0.001633998561, -0.001196169967, 0.000437828595, 
0.000320512777, -0.000117315818, -0.000085881139, 
0.000031434678, 0.000023011782, -(8.422897*10~-6), 

-(6.165980000000001*10~-6), 2.2569054*10~-6}; 

EndPackage[] 
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