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1 Introduction 

The recognition and separation of patterns is becoming increasingly important in modern applications. For 
example, it is currently being used at the University of Wisconsin Hospitals to aid in the diagnosis of breast 
cancer. Other medical applications of this technique include the diagnosis of heart disease and cystic fibrosis. 
Basically, the problem of recognition and separation of pattern sets can be stated as: 

Given two disjoint, finite sets, A and B, in n-dimensional real space jRnxl , a discriminant function 
f : jRnxl __ jR , must be found that has the properties that f(A) > 0 and f(B) ~ 0, i.e. f(a) > 0 when 
a e A while f(b) ~ 0 when b e B. 

A single linear programming problem can be used to find a linear discriminant function of the form 

f(x) =ax + fJ, where a,fJ e JR, 

when the convex hulls of A and B do not intersect. Some examples of this situation will be explored in 
the third section of this paper. In real life, however, the convex hulls often intersect, and a more complex 
discriminant function must be constructed. In the papers [1] and [2], Mangasarian, Setiono, and Wolberg 
have established a method of constructing discriminant functions for the more complex situations where the 
convex hulls of A and B do intersect. Their method uses linear programming techniques. The purpose of 
this paper is to reformulate the results of Mangasarian, Setiono, and Wolberg into the format used in our 
IWU linear programming course and many of our linear algebra classes in hopes that future IWU linear 
programming students can quickly master the concepts and algorithm. It is anticipated that future student 
projects may consist of some of the following: 

(i) a software implementation of this algorithm in our NeXT Lab. 
(ii) applications using our NeXT implementation to local pattern recognition problems. 

2 Basic Notation and Concepts 

Our notation is consistent with that found in Jeter [3] and Cottle and Stone [4]. Throughout this paper, 
a vector of ones will be denoted bye, vectors will be denoted by column vectors, and a zero vector will be 
denoted by O. 

Definition 2.1 Unsymmetric primal linear programming problem: An unsymmetric primal linear 
programming problem is one of the form 

minimize cTx subject to Ax = b and x ~ 0, 

where x = [Xl ••• xn]T e JRnx!,c= [cl"'CnY e JR nx1 , and A = [aij] e JRmxn. 

Definition 2.2 Dual problem: The dual problem is defined to be 

maximize bTw 

subject to 

ATw ~ c, where wE jRmxl. 

The Fundamental Duality Theorem of Linear Programming, [3], states that: 

Theorem 2.1 Fundamental Duality Theorem: If either the primal or the dual problem has a finite 
optimal solution, then the other problem has a finite optimal solution as well. Moreover, the optimal values 
of the two objective functions are equal, i.e., 

min {cTx: Ax = b,x ~ O} = max {bTw : ATw ~ c}. 
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An immediate corollary to the Fundamental Duality Theorem of Linear Programming is the well known 
Farkas Lemma: 

Lemma 2.2 Farkas Lemma: There exists an x ~ 0 such that Ax = b if and only if ATw ~ 0 implies that 
bTw ~ O. 

The Farkas Lemma is often stated in the following form: 

Lemma 2.3 (Farkas) One and only one of the following systems is consistent: 

Ax =b where x ~ 0 

or 
ATY ~ 0 where bTy < O. 

Geometrically, the Farkas Lemma says that either b is in the convex cone generated by the columns of A or 
b is separated from the convex cone generated by the columns of A by a hyperplane. 

Definition 2.3 Symmetric primal linear programming problem: A symmetric primal linear program­
ming problem is one of the form 

minimize cTx subject to Ax ~ b and x ~ O. 

Definition 2.4 Dual oj the symmetric primal problem: The dual of the symmetric primal problem is 
one of the form 

maximize bTw subject to ATw $ c and w ~ O. 

When both the symmetric primal and dual problems are feasible, then there exists optimal solutions x and 
T bTw to each respective problem such that c x = w. Other basic notation used in this paper includes the 

following: 

A.j := [alj ... anj]T, i.e., A.j denotes the jth column of matrix A. ( Here A = [ajj] E JRnxm). 

(Aj. will denote the ith row of matrix A). In particular, we define two collections A and B of points in JRnxl 
as follows: 

A.m = [aim." anm]T E JRnxl 

Then A = {A. b ... ,A.m } ~ JRnxI, i.e., A is a set of points in JRnxl. Also define 
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Next let 

B.k = [blk bnk]T E JRnXl 

ThenB = {B. 1 ••• B.k} ~ JRnxl andB:= [B.l B.k] = [b jj] E jRnxk. Notice that A = {A.f., ... ,A;'.}and 
B = {Br, ... ,Br}. Extensive use will be made of the sets A and B and the matrices A and B in this paper. 
Also, A and B are assumed to be disjoint throughout this paper. For any x E JRnxl, the 00 - norm of x, 
denoted by II x 1100, is defined by 

II x 1100= max {I Xl 1,1 x21,· .. ,I X n I}. 

A point x is an extreme point of a convex set S if and only if x = oy + (1- o)z where y, z E S and 0 E [0,1] 
implies that 0 = 0 or 0 = 1, i.e., !3y, z E Sand 0 E (0,1) for which y ::/= z and x = oy + (1 - o)z. In 
particular, x will be an extreme point of conv(A) if and only if x = Au, u ;:: 0 and eT u = 1 implies that u 
has the form [0 ... 0 1 0 ... ojT where u has only one nozero coordinate, a one. Finally, for any S ~ jRnxl the 
convex hull of S (denoted by conv(S)) and the conical hull of S (denoted by coni(S)) are defined as follows: 

k k 

conv(S) ={L OjXj: each Xj E S, each OJ E JR, each OJ ;:: 0, L OJ = 1, and kEN} 
j=l i=l 

and 
k 

coni(S) = {L OjXj: each Xi E S, each OJ E JR, each OJ ;:: 0, and kEN}. 
j=1 

Basic Results 

We begin by considering the relationships between three basic problems: 

When are the convex sets, conv(A) and conv(B) disjoint? When do they intersect? 

When is the system 

(I) 
Au Bv = 0 

-eTu + eTv = 0 

0::/= ruTvTf ;:: 0 

consistent, where A E JRnxm,B E JRnxk,u E JRmxl, and v E JRkxl. When is system (I) inconsistent? 
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When does the linear programming problem 

LP1 
T Tsmaximize OTu +OT V - e T - e

subject to 

Au Bv T S 0+ = 
-eTu -1= 

eTv = 1 

u ~ 0, v ~ 0, T ~ 0, s ~ 0
 

have a zero maximum? When does LP1 have a negative minimum?
 

Our first proposition explores the relationship between the first two problems. It forms the basis from 
which methods of determining whether or not the sets A and 13 are separable are based. 

Proposition 3.1 
Conv(A) n conv(13):f; 0 iff System I is consistent. 

PROOF: 

Suppose that u· and v· is a solution of (1). Then 

m Ie 

L uiA.; - L viB.j = Au· - Bv· = 0 
;=1 j=1 

Therefore 
m Ie 

L uiA.; = L viB.j. 
;=1 j=1 

But
 

O:f; ( ~: ) ~ 0
 

means that each ui ~ 0 and vi ~ 0 and at least one ui or vi :f; o. So,
 

m Ie 

LuiA.; E coni(A) and LviB. j E coni(13). 
~1 ~1 

But, letting 
m Ie 

M := Lui = Lvi> 0, 
;=1 j=1 

we have that 

since each 
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Likewise,
 
1 Ie
 

M I>iB'i E conv(B).
 
i=l 

But 
1 m 1 Ie 

M LuiA.i = M LviB'i 
i=l i=l 

Therefore
 
conv(A) n conv(B) =10.
 

Now suppose that
 
conv(A) n conv(B) =10.
 

Then 3 u· and v· so that 

m Ie 

LuiA.i = LviB·i , i.e., Au· - Bv· = 0, 
i=l i=l 

where 
m Ie 

ui ;::: 0, Lui =1, vi ;::: 0, and Lvi = 1. 
~l ~l 

Notice that 0 =I u· ;::: 0 and 0 =I v· ;::: O. Therefore, 

Also,
 
m Ie
 

Lui = 1 = LV; 
i=l i=l 

I.e. , eT u· =eT v·. SO, _eT u· + eT v· =O. Therefore u· and v· solves (I). 

Proposition 3.1 can be restated as follows: 

System (I) is inconsistent if and only if conv(A) n conv(B) =0. 

Next we study the relationship of LP1 and the question of whether conv(A) and conv(B) are disjoint. 
The maximal value of the objective function in LP1 is always less than or equal to O. Hence, when system 
(I) has a solution u and v, then u, v and r = s =0 solves LP1 with a maximal objective value of O. Likewise, 
when LP1 has a solution u, v, r, and s in which the maximal value of the objective function is zero, then 
r = s =0 and (I) has a solution u and v. Hence, 

Proposition 3.2 System (1) is consistent if and only if LPl has a solution in which the maximal value of 
the objective function is O. 

6 
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Combining Proposition 1 and 2 yields: 

Proposition 3.3 Conv(A) n conv(B) ¥- 0 if and only if LPl has a solution in which the maximal value of 
the objective junction is O. 

Proposition 3.4 Conv(A) n conv(B) = 0 if and only if LPl has a solution in which the maximal value of 
the objective junction is negative. 

The constraints for LPI can be written as follows: 

• 

Hence, the dual of LPI can be expressed in the following forms: 

min OTc - a + f3 

subject to 

A -B 1 
_eT 0 0 >[ ~Ir [;] [J: ]T0 e 0 

or 

min OTc - a + f3 

subject to 

-e 
_BT 0 

~1 0 

[ AT 

~ ][;] [J: ]-1 0 

or 

min OTc - a + f3 

subject to 

ae ~ o 
+ f3e > o 

~ -e 
> -e 

where A E JRnxm,B E JRnxk,c E JRnxl,a E JR , f3 E JR. 

The Fundamental Duality Theorem of Linear Programming yields the following linear separability crite­
rion for A and B. 

Proposition 3.5 Conv(A) n conv(B) =0 if and only if LP2 has an optimal solution in which the minimum 
of the objective junction is negative. 
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Notice that in such an optimal soution of LP2, 0 > /3 since the minimal value of OT C - 0 + /3 < O. Hence, 

T 20 0 + /3
A C ~ oe = -;:;-e > -2-e. 

Likewise, 
2/3 0 + /3

B Tc < /3e = -e < --e. - 2 2 

Hence, the plane {x E jRnxl : xT c = Q~I3} separates the sets A and B. 
The following linear programming problem also leads to separability criterion for sets A and B: 

T Tmax e u + e v
 

subject to
 

Au Bv = 0
 
-eTu eTv+ = 0 
-u > -e 

-v -e~ 
u > 0 

v > 0 

Proposition 3.6 Conv(A) n conv(B) 1= 0 if and only if LP3 has an optimal solution in which the maximal 
value of the objective function is positive. 

PROOF: 

Suppose that conv(A) n conv(B) 1= 0. By Proposition 3.1 3u, v E jRnxl so that 

Au Bv = 0 
-eTu eTv 0+ = 

O~u1=O 

o~ v 1= O.
 

Notice that u and veach have at least one positive component. Therefore,
 

m It: 
T T e u =E Ui > 0 and e v =E Vi > O. 

i=1 i=1 

Therefore, 
T T e u + e v> O.
 

We will show that a feasible solution for LP3 can be constructed from u and v. Let
 

" 1 d • 1 u = r-u an v = r-v. 
e u e v 

Then
 
11 ~ 0 and v~ O.
 

Notice that 
1 Ui 

r-Ui = ~ 1 for all i. 
e u Ul + ... + Urn 
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Therefore, 
• 1 
u = --u < eeTu - , 

and 
-u ~ -e. 

Also, notice that 
1 Vi 

----;y- Vi = ~ 1 for all i. 
e V VI + ... + Vic 

Therefore 
• 1 
V = ----;y-v ~ e, 

e V 

and 
-iJ ~ -e. 

Since Au - Bv =0, then 
1 1 

eTu (Au - Bv) = eTu 0, 

1 1 
A-u-B-v=O,

eTu eTv 

Au - BiJ =0, 

and 
1 TTl-(-e u+ e v) =0(-).

eTu eTu 

Therefore, 
_eT U + eT iJ = O. 

Thus, u and iJ together form a feasible solution for LP3. Moreover, 0 < eT U + eT iJ ~ 2n. Since 
LP3 is feasible and the objective function is bounded from above, it follows that LP3 has an 
optimal solution for which the objective function is positive. 

Next, if LP3 has an optimal solution u and v for which the objective function is positive, then 

u ~ O,v ~ O. 
T TSince eTu + e V > 0, then either u or v has at least one positive entry. But eTu = e v implies 

that each u and v must have at least one positive entry. Therefore, 

o~ u i: 0, and 0 ~ v i: O. 

Thus system I has a solution. So, conv(A) n conv(B) i: 0 by Proposition 3.1. 

Now consider LP3 in the following format 

max eTu + eTv 

subject to 

Au Bv = o 
-eTu + eTv = o 
-u ~ -e 

-v ~ -e 

u ~ O,v ~ O. 
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\Ve shall now express LP3 in the symmetric dual form. This requires several rewrites of LP3 as follows: 

subject to 

Bv 5 
+ Bv 5 
+ eTv 5 

eTv 5 
5 

v 5 

u ~ O,v ~ 0 

subject to 

A -B 
-A B 
_eT Te

T ..Te -e [~ ]5 
I 0 
0 I 

u ~ O,v ~ 0 

Hence, the dual of LP3 has the symmetric primal form 

min eTy + eTw 

subject to 

0 
0 
0 
0 
e 
e 

o 
o 
o 
o 
e 
e 

x 
z 

[ AT _AT -e e I ] a 
~f3 [:]_BT BT e -e 0 ~ 

y 
w 

x ~ 0, y ~ 0, a ~ 0, f3 ~ 0, z ~ 0, w ~ 0 

or 

min eTy + eTw 

subject to 

AT(x-z) (a-f3)e + y ~ e 
-BT(x-z) + (a-f3)e + w ~ e 

x ~ 0, y ~ 0, a ~ 0, f3 ~ 0, z ~ 0, w ~ 0 

and finally, letting c = x - z and, = a - f3 
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min eTy + eT w 

subject to 

• 

'Ye + y ? e 
'Ye + w ? e 

y? 0, w ? 0 

We then have the following proposition: 

Proposition 3.1 Conv(A) Il conv(B) =0 if and only if LP4 has an optimal solution for which the objective 
junction has value O. 

PROOF: 

It follows from the Fundamental Duality Theorem of Linear Programming and from Propo­
sition 3.6 that: conv(A) n conv(B) # 0 if and only if LP4 has an optimal solution for which 
the objective function is positive. (Notice that for any feasible solution c, 'Y, y, and w of LP4 it 
follows that eT y + eTw ? 0.) Thus, conv(A) n conv(B) = 0 if and only if LP4 has an optimal 
solution for which the objective function has value O. I 

In addition, the plane H(c,'Y):= {x: cTx = 'Y} separates the sets A and B where (c,'Y,y,z) is any solution 
of LP4. To see this, define 

Note that 

But 
T T y =w =0 if e y + e w =O. 

Therefore, 
ATC ? e + 'Ye > 'Ye and B T c :5 -e + 'Ye < 'Ye. 

THence, the plane x c = 'Y separates the sets A and B. In fact it strictly separates the sets A and B. 
The following two propositions in this section form the foundation of a degeneracy procedure which is 

used in the algorithm to follow in the next section. They are taken from Mangasarian [5]. 

Proposition 3.8 If conv(A) n conv(B) # 0, then at least one of the systems 

Au 
eTu 

= 
= 

B.j ,for some j E {I, ... ,k} 
I 

u ? 0 

or 
Bv 
eTv 

= 
= 

A.j ,for some j E {I, ... ,m} 
I 

v > 0 

is inconsistent. 
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PROOF: 

Suppose that all of the above systems are always consistent. If the first system is always 
consistent then 

B.j E conv(A) Vi = 1, ... ,k. 

Hence,
 
B ~ conv(A).
 

Likewise, if the second system is consistent Vi = 1, ... ,m, then 

A ~ conv(B). 

But this means that 

conv(B) ~ conv(A) and conv(A) ~ conv(B), i.e., 

conv(A) = conv(B). Pick an A.j E A that is an extreme point of conv(A). Since A.j = Bv, 
Te v = 1 for some v ~ 0, and each B.; E conv(A), it follows that A.j = B.1e for some k, Le., 

v = [0 ... 0 1 0 ... ojT where the nonzero coordinate of v is in the k-th coordinate. This is a 
contradiction since An B =0 in this paper. Hence, at least one of the systems in inconsistent 
for some j. I 

Proposition 3.9 If conv(A) n conv(B) i: 0, then one of the following systems 

a f3 0> 
ATc ae > 0 

-BT.jc + f3 ~ o for some i 
-e ~ c ~ e 

or 

a f3 > 0 
AT.·c a ~ o for some i 
-Btc + f3e ~ 0 

-e ~ c ~ e 

is consistent. 

PROOF: 

Without loss of generality we can assume from Proposition 3.8 that a system of equations of 
the form 

Au = B.j 
eTu = 1 

u~O 

which may be written 

[ e~ ] u = [ ~.j ] and u ~ 0 

has no solution.
 
From the Farkas Lemma, we know that
 

[ j. ]T Y ~ 0, [ B/ ] T Y < 0 has a solution. 
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This may be written as 

[AT e] [ _\ ] ~ 0, [BT. j 1] [ ~).. ] < 0, when y = [ ~).. ] 
or 

(1) AT Z -)..e ~ 0, BT.jz -).. < 0 has a solution. 

\Ve know Z ::f:. 0, since if Z = 0, then 

-)..e ~ 0 and -).. < 0 

or 
)..e ~ 0 and)" > O. 

But e is a vector of ones, so we obtain 

).. ~ 0 and)" > 0, which is a contradiction. 

Now set 
1 ).. T 

C = I Iz, Q' = I' fJ = B .jCmax Zj max I Zj 

After dividing each equation in (1) by maxi Zj I and substituting c, and Q' into (1), we obtain 

> 0 
> 0 for some j 

In addition, substituting fJ for BT.jc in the last inequality yields Q' - fJ > O. 
Also, note that max I Zj I> 0 and max I Zj I~ Zj. Therefore 

-e ~ C ~ e. 

So 
Q' fJ > 0 

ATc Q'e > 0 
-BT.jc fJ ~ o for some j+ 

-e ~ C ~ e 

has a solution if (1) has a solution. In a similar fashion we can prove that if 

Bv = A. j for some j 
eTv = 1 

v ~ 0 

has no solution, 

then 
Q' fJ > 0 

AT 
.{ Q' ~ 0 for some j 

-B C + fJe ~ 0 

-e ~ C ~ e 

has a solution. 

I 
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4 The Main Results 

The previous linear programs are not guaranteed to form a plane that will partially separate A from B when 
their convex hulls intersect. By imposing a nonzeroness condition on the normal to the separating plane, c, 
the partial separation of A and B can be assured. The following nonconvex linear program can be solved in 
polynomial time. 

min - a + j3 

subject to 

ATc ae ~ 0 
_BT

C + j3e > 0 

II c 1100 = 1 

Theorem 4.1 Problem LPS, with rational entries for A and B can be solved in polynomial time by solving 
the 2n linear programming problems, each of the form found in LP6, for i = 1,2, ... , n and taking the solu­
tion with the least -a + j3 among the 2n solutions of LP6. 

LP6
 
min OTc - a + j3
 

subject to 

ATc ae ~ 0 
-BTc j3e 0+ ~ 

c -e~ 
c ~ e 
Cj = ±1 

PROOF: 

For each i = 1, ... , n solve the two linear programming problems
 
LP6.1
 

min OTc - a + j3
 

subject to 

ATc ae ~ 0 
-BTc j3e 0+ > 

c -e~ 
c e~ 
Cj = 1 

and
 
LP6.2
 

min OTc - a + j3
 

subject to 

ATc ae 0~ 
-BTc j3e 0+ ~ 

c > -e 
c ~ e 
Cj = -1 

14 
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For the two solutions compute the corresponding value of the objective function, OT c - 0'+ fJ. 
Let c , ai, and fJi denote the solution that yields the smallest value of -a+fJ. Next let c, Ii, and ij 

ibe any solution of LP5. Since" c i 1100= 1, it follows that each c , ai, and fJi is a feasible solution 
of LP5 and 

(1)
 
-Ii + ij:5 min {-a' + fJ' : 1= 1, ... , n}.
 

Since II c II inftll= 1, we have that 3 1 E {I, ... , n} such that c, = ±1 while -1 :5 Cj :5 1 for all 
j = 1, ... , n. Thus, c, Ii, and ij is a feasible solution of one of the linear programming problems 
LP6. In particular, 

_a' + fJ' :5 -Ii + ij. 

Thus, 
(2)
 

min {-a' + fJ' : 1 = 1, ... ,n} :5 -Ii + ij.
 

Combining (1) and (2) we have that 

- Ii + ij = min {-a' + fJ' : 1 =1,... , n}. 

Therefore, when min {-a' + fJ' : 1 =1, ... , n} = _ah+ fJh, then ch,ah, and fJh solves LP5. 
Since 2n LP's are needed to compute (ch, ah,fJh), and each LP is solvable in polynomial time, 
then LP5 is solvable in polynomial time by solving the 2n linear programs of LP6. We can now 
outline an algorithm for discriminating between two disjoint point sets A and 8 represented by 
the matrices A E jRmxn and B E jRkxn. 

Algorithm 1 

1.	 Set j = 0, AO' = A, AO = A,8° = 8, BO = B, and input an integer jmax. Solve LP2. If the 
min of LP2 is negative, stop, the plane 

T a+fJ x c=-­
2 

separates A and 8. 

2.	 For each i = 1, ... , n solve LP6.1 and LP6.2. Let c i , ai, and fJi denote corresponding 
solutions of LP6.1, and c-i,a- i , and fJ- i denote corresponding solutions of LP6.2. For 
each i compute 

Likewise for each i compute 

(ii) cardinality {T : AT.rc- i :5 fJ-i} + cardinality {s : BT.ac- i ~ a- i }. 

Define i(j) to be the minimum of the 2n values in (i) and (ii), and let ci(j), ai(j), and fJi(j) 

be a solution of the corresponding LP6 that yields i(j). 
Comment This step picks the LP6.1 or LP6.2 for which the closed set between the parallel 
planes Ci(j)T x = ai(j) and Ci(j)T x = fJi(j) contains the least number of points from Ai and 
8 i	 , while the open half spaces outside this region separate the remaining portions of Ai 
and Bi. 
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3. Let 

• 

and 
Bi+1 = {B .• E Bi I BT.•ci(j) ~ Qi(j)} 

If Ai+1 i- Ai or Bi+1 i- Bi go to (5). 

4.	 Degeneracy Procedure: Find a column A'r of Ai (case a) or column B .• or Bi (case b) such 
that when LP2 is solved with A = A' r and B = Bi (case a) or A = Ai and B = B .• (case 
b) the minimum of LP2 is negative. In either case denote the solution of the LP by (c, ii, ,8). 

Case a: Define ci(j) = c, o:i(i) = -00, f3i(j) =,8, Bi+ i = Bi, 
Ai+l = {Ai I Ai E Ai, Arc ~,B}, 

Case b: Define ci(j) = c, o:i(j) = ii, f3i(j) =00, Ai+l =Ai, Bi+ 1 = {B i I B i E Bi, Br c ~ ii} 

Comment: This degeneracy procedure eliminates at least one point from Ai or Bi and thus 
ensures that either Ai+1 i- Ai or Bi+l i- Bi. It is based on Propositions 3.8 and 3.9. 

5.	 Save the planes 

x T ci(j) =Qi(j) and x T ci(j) =f3i(j) 

6.	 If Ai+l = Bi+l = 0, replace jmax by j and stop. If j = jmax stop, else increment j by 1 
and go to (2). 

When A and B; are not linearly separable the previous algorithm constructs a sequence of 
parallel planes: 

x T ci(j) = f3i(j) , x T ci(j) = Qi(j) ,j = 0, ... ,jmax 

such that if jma.x is sufficiently large, the sets A and B are separated by the following procedure. 

PROCEDURE: Set j = 0, input jmax and a given pattern x T E ]Rn. 

1.	 If j = jmax, go to (4). 

2.	 If x Tci(j) > f3i(j) , then x E A, stop.
 
If x T ci(j) < Qi(i), then x E B, stop.
 

3.	 Increment j by 1 and go to (1). 

4.	 If x T ci(j) ~ <l!'(j)~i3'(j), the x E A, stop.
 

If x T ci(j) < <l!'(j)~l3i(j), then x E B, stop.
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• 

The following sets were separated, with the help of the linear programming software package 
Lindo, using the previously described algorithm. 

Therefore, 

[ 
123 

A = 3 7 4 
3 
10 

6]
5 

B = {[4 7jT, [5 101T 
, [9 81 T 

} 

Therefore, 

[4 5 9]
B = 7 10 8 

Let 

and 

(2) Cl = 1 

Q = -.33333 
fJ = 6.33333 A = {A 1 .,A2.,A3 .,A•. ,As.} 
Cl =1 13 ={B h B2.,Bd 
C2 = -.33333 

Cl =-1 

Q =-8 
fJ = -7.5 A = {A 2 .,A3 .,A•. ,As.} 
Cl =-1 13 =0 
C2 = -.5
 

C2 = 1
 

Q = 2.8 
fJ=9 A = {A h A2 .,A3.,As.} 
Cl = -.2 13 = {B1.,B2.,Bd 
C2 = 1 

C2 =-1 

Q = -13 
fJ=-l1 A= {A•. ,As.} 
Cl =-1 13={Bd 
C2 =-1 

Therefore, (ci(j), Qi(j) , fJi(j)) =([ =~ ],-13, -11) 
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(3) Now 

• 

(4) Save the planes 

-Xl - X2 = -13 and - Xl - X2 = -11 

(1) 
min of LP2 = -.8 with 

a = 9 
(3 = 8.2 

1 
.6 

Therefore, the plane Xl + .6X2 = 8.6 separates the previous A and B. 

18
 



• 

5 

-5 

-10 

.. 

Separation of Sets A and Busing MuItisurface 
Method of Pattern Separation 

• 

.. 

-c,\ '"\ ,",,1_ 

2.5 5 



5 

• 

Applications 

This method of pattern separation is currently in use at the University of Wisconsin Hospitals 
to aid in the diagnosis of breast cancer. A fine needle aspirate is taken from a patient and 
nine measurements are made. These nine measurements are: clump thickness, size uniformity, 
marginal adhesion, cell size, shape uniformity, bare nuclei, bland chromatin, normal nucleoli and 
mitosis. Each of the nine measurements is designated by an integer between 1 and 10, with larger 
numbers indicating a greater likelihood of malignancy. The discriminant function constructed, 
which is based on algorithm 1, has been applied to 369 points, 168 of which come from patients 
with confirmed malignancy. Algorithm 1 generated four pairs of parallel planes which completely 
separated the benign samples from the malignant ones. The resulting discriminant function can 
instantly classify any sample point given to it in ]R9. So far, 45 new sample points have been 
encountered since the construction of the discriminant function, and all were classified correctly 
[1]. 

Another possible application of this method is in the acceptance of students to college. Schools 
must accept many more students than they have space for since many of those students will 
attend school elsewhere. The difficulty lies in determining the yield of students. Students decide 
which college to attend based on many factors, including: location, academic reputation, cost, 
financial aid and size. Each of these variables, and several others, could be assigned a value and 
a discriminant function could be constructed which separates students based upon the likelihood 
they would attend a particular college. This would aid the admissions office in deciding who, and 
how many students to accept. 

o 
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