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1 Introduction

The recognition and separation of patterns is becoming increasingly important in modern applications. For
example, it is currently being used at the University of Wisconsin Hospitals to aid in the diagnosis of breast
cancer. Other medical applications of this technique include the diagnosis of heart disease and cystic fibrosis.
Basically, the problem of recognition and separation of pattern sets can be stated as:

Given two disjoint, finite sets, A and 5, in n-dimensional real space R"*! , a discriminant function
f:R"™! — R, must be found that has the properties that f(A) > 0 and f(B) <0, i.e. f(a) > 0 when
a € A while f(b) < 0 when b € B.

A single linear programming problem can be used to find a linear discriminant function of the form
f(z) = az + 3, where o, 8 € R,

when the convex hulls of A and B do not intersect. Some examples of this situation will be explored in
the third section of this paper. In real life, however, the convex hulls often intersect, and a more complex
discriminant function must be constructed. In the papers [1] and [2], Mangasarian, Setiono, and Wolberg
have established a method of constructing discriminant functions for the more complex situations where the
convex hulls of A and B do intersect. Their method uses linear programming techniques. The purpose of
this paper is to reformulate the results of Mangasarian, Setiono, and Wolberg into the format used in our
IWU linear programming course and many of our linear algebra classes in hopes that future IWU linear
programming students can quickly master the concepts and algorithm. It is anticipated that future student
projects may consist of some of the following:

(i) a software implementation of this algorithm in our NeXT Lab.

(ii) applications using our NeXT implementation to local pattern recognition problems.

2 Basic Notation and Concepts

Our notation is consistent with that found in Jeter [3] and Cottle and Stone [4]. Throughout this paper,
a vector of ones will be denoted by e, vectors will be denoted by column vectors, and a zero vector will be
denoted by 0. '

Definition 2.1 Unsymmetric primal linear programming problem: An unsymmetric primal linear
programming problem is one of the form

minimize c¥

where z = [z1...2,)T € R™ c=[c)...ca)T €R™™), and A =[a;;] € R™*",

z subject to Az =band z >0,

Definition 2.2 Dual problem: The dual problem is defined to be

mazimize b7 w
subject to

ATw < ¢, where w € R™*1,

The Fundamental Duality Theorem of Linear Programming, [3], states that:

Theorem 2.1 Fundamental Duality Theorem: If either the primal or the dual problem has a finite
optimal solution, then the other problem has a finite optimal solution as well. Moreover, the optimal values
of the two objective functions are equal, i.e.,

min {cTz: Az = b,z > 0} = maz {dTw: ATw < ¢}.



An immediate corollary to the Fundamental Duality Theorem of Linear Programming is the well known
Farkas Lemma:

Lemma 2.2 Farkas Lemma: There ezists an > 0 such that Ar = b if and only if ATw > 0 implies that
bTw > 0.

The Farkas Lemma is often stated in the following form:
Lemma 2.3 (Farkas) One and only one of the following systems is consistent:

Az =b where z 20

or
ATy > 0 where bTy < 0.

Geometrically, the Farkas Lemma says that either b is in the convex cone generated by the columns of A or
b is separated from the convex cone generated by the columns of A by a hyperplane.

Definition 2.3 Symmetric primal linear programming problem: A symmetric primal linear program-
ming problem is one of the form

minimize cT z subject to Az > b and z > 0.

Definition 2.4 Dual of the symmetric primal problem: The dual of the symmetric primal problem is

one of the form
mazimize bTw subject to ATw < cand w> 0.

When both the symmetric primal and dual problems are feasible, then there exists optimal solutions x and
w to each respective problem such that ¢z = dTw. Other basic notation used in this paper includes the
following:

A.j:=[a1j...an;]T,i.e., A.j denotes the jth column of matrix A. ( Here A = [a;;] € R™*™).

(A;. will denote the ith row of matrix A). In particular, we define two collections A and B of points in R™*!

as follows:
A.l = [a“ e a,u]T € RnXI

Ag = [alz . a,.g]T € R™*1

A = [a1m ... anm]T € R™!

Then A = {A.q,... ,A.m} C R" ! ie., Ais a set of points in R"*!. Also define

A=[Ag.. Ay =[a;] €R™™



Next let
By =[b...bm]|T € R*

B =[biz...bng)T € R™*!

B = [bik... ba)T € R™™?

Then B = {B.;... Bt} CR"*and B := [B.,... B.{] = [bij] € R"**. Notice that A = {47.,... , AT .}and
B={Bf.,... ,BI.}. Extensive use will be made of the sets 4 and B and the matrices A and B in this paper.
Also, A and B are assumed to be disjoint throughout this paper. For any z € R"*!, the oo - norm of x,
denoted by || z ||, is defined by

”IHOO= max {Izl lle'l l, ,|I" l}

A point x is an extreme point of a convex set S if and only if z = ay + (1 — @)z where y,z € § and « € [0,1]
implies that « = 0 or &« = 1, i.e.,, Ay,2 € S and a € (0,1) for which y # zandz =ay+ (1 -a)z. In
particular, x will be an extreme point of conv(.A4) if and only if z = Au,u > 0 and eTu = 1 implies that u
has the form [0...0 1 0...0]7 where u has only one nozero coordinate, a one. Finally, for any § C R"*! the
convex hull of S (denoted by conv(S)) and the conical hull of S (denoted by coni(S)) are defined as follows:

k k
conv(S) = {Z a;z;: each z; € S, each a; € R, each o; > 0, Za,- =1, and k € N}
i=1 i=1
and
k ,
coni(S) = {Z a;z;: each z; € S, each a; € R, each a; >0, and k € N}.

i=1

3 Basic Results

We begin by considering the relationships between three basic problems:

When are the convex sets, conv(A) and conv(B) disjoint? When do they intersect?
When is the system
)

Au - Bv = 0
—eTu + €Tv = 0

0# wTvT|T>0

consistent, where A € R"*™, B € R"** u ¢ R™*!, and v € R¥*!. When is system (I) inconsistent?



When does the linear programming problem

LP1
maximize 07u + 0Tv — eTr — eTs
subject to
Au — Bv 4+ r = s = 0
—eTy = -1
eTy = 1

©u>0,v2>0,r>0,s>0

have a zero maximum? When does LP1 have a negative minimum?

Our first proposition explores the relationship between the first two problems. It forms the basis from
which methods of determining whether or not the sets A and B are separable are based.

Proposition 3.1
Conv(A) N conv(B) # O iff System I is consistent.

Proor:
Suppose that u™ and v* is a solution of (I). Then
m k
> ujAi-> viB.j=Au" - Bv' =0
i=1 j=1
Therefore .
Zu,A.; = Zv‘B j
i=1 j=1
But

0#(’51)20

means that each u} > 0 and vj > 0 and at least one u} or vi #0. So,

m k
Z u{A.; € coni(A) and Z‘U;B.j € coni(B).

i=1 =1

But, letting

we have that

1 m . _ m 1 . .
i ; uiAg = Z(Hu")A“ € conv(A),

since each

1 =1 1 <& 1
—ur> dE:—?=-—§:?=— =1.
Tl >0, an AR Y PPt MM 1

i=1 i=1



Likewise,

k
_AIZZU;B‘j € conv(B).
i=1

But
Il ., _ 1 .
ﬁZUiA.{—MZUJ-B.j
Therefore

conv(A) N conv(B) # 0.

Now suppose that
conv(A) N conv(B) # 0.

Then 3 u* and v* so that
m k
Z uj A = Zv;B.j, ie., Au* — Bv* =0,
i=1 j=1

where

m k
u; 20, Zu: =1, v; 20, and Zv}': 1.
i=1 ' j=1

Notice that 0 # u™ > 0 and 0 # v* > 0. Therefore,

0#(';:)20.

Also,
m k
- 1 — -
E u; = 1= E ‘UJ'
i=1 j=1
ie. ,eTu* =eTv". So, —eTu* + eTv* = 0. Therefore u* and v* solves (I).

Proposition 3.1 can be restated as follows:

System (1) is inconsistent if and only if conv(A) N conv(B) = 0.

Next we study the relationship of LP1 and the question of whether conv(.A) and conv(B) are disjoint.
The maximal value of the objective function in LP1 is always less than or equai to 0. Hence, when system
(I) has a solution u and v, then u, v and r = s = 0 solves LP1 with a maximal objective value of 0. Likewise,
when LP1 has a solution u, v, r, and s in which the maximal value of the objective function is zero, then
r = s =0 and (I) has a solution u and v. Hence,

Proposition 3.2 System (I) is consistent if and only if LP1 has a solution in which the mazimal value of
the objective function is 0.



Combining Proposition 1 and 2 yields:

Proposition 3.3 Conv(A) N conv(B) # @ if and only if LP1 has a solution in which the mazimal value of
the objective function is 0.

Proposition 3.4 Conv(A) N conv(B) = 0 if and only if LP1 has a solution in which the mazimal value of
the objective function is negative.

The constraints for LP1 can be written as follows:

A -B I -I
-eT 0 0 O

0 e 0 o0

w % Q@
i
—
1
= ! o
[ |

Hence, the dual of LP1 can be expressed in the following forms:

minOTc—a+ﬁ

subject to
A -B I -11"[e¢ :
-eT 0 0 0 a | 2| )
0 e 0 o B
—e
or
min 0Tc—a+4
subject to ’
AT —e 0 . 0
-BT 0 e 0
I 0 0 [g 2| —e
-I 0 0 —€
or
LP2
min 0Tc —a + 3
subject to
ATe - ae > 0
—-BTc + Be > 0
Ic > —e
—Ic > -—e

where A € R"*™, B e R"**,ce R"*,a e R,f € R.

The Fundamental Duality Theorem of Linear Programming yields the following linear separability crite-
rion for A4 and B.

Proposition 3.5 Conu(A) N conv(B) = O if and only if LP2 has an optimal solution in which the minimum
of the objective function is negative.



Notice that in such an optimal soution of LP2, a > f since the minimal value of 0T¢ — a + 8 < 0. Hence,

ATc>ae= 2—ae > a+ﬂe.
a 2
Likewise,
BTc< fe = %ﬂ-e < -a—;-ﬁe.

Hence, the plane {z € R**!: zT¢c = %g} separates the sets A and B.
The following linear programming problem also leads to separability criterion for sets A and B:

LP3
max eTu + eTv
subject to

Au - Bv = 0

—eTu + v = 0

-u > =-e

-v 2 -—e

u > 0

v 2 0

where A € R"*™, B € R"*F u € R™*!,y € R¥*!,

Proposition 3.6 Conv(A) N conv(B) # O if and only if LP3 has an optimal solution in which the mazimal
value of the objective function is positive.

PRrOOF:
Suppose that conv(A) N conv(B) # @. By Proposition 3.1 3'u,v € R"*! so that
Au - Bv = 0
—eTu + eTv = 0
0<u#0
0<v#0.
Notice that u and v each have at least one positive component. Therefore,
m k
eTu= Zu; >0and eTv= Zv; > 0.
i=1 i=1
Therefore,

eTu+eTv>0.

We will show that a feasible solution for LP3 can be constructed from u and v. Let

.1 dd= 1
u_;Tuuan U—mv.
Then
©>0and 9 2>0.
Notice that
1 U

——u; = ————— < 1for all i.
e‘u U1 +..+um



Therefore,
1
12 =—u<e
eTy — 7
and
-2 —e
Also, notice that
1 vg
T ! S 1 fOI‘ all i
etv 1+ ...+ Uk
Therefore )
t=——v<e
eTy — 7
and
-0 > —e

Since Au — Bv = 0, then .
1
m(Au - B‘U) = mo,

1 1
A;T—;u - B'eT—v‘U = 0,
Ai - By =0,
and ~
1 T T 1
m(——e ute v)=0(¢_3T_u .
Therefore,

—eTi+eTo=0.
Thus, @ and ¢ together form a feasible solution for LP3. Moreover, 0 < eTi+ eTy < 2n. Since
LP3 is feasible and the objective function is bounded from ahove, it follows that LP3 has an

optimal solution for which the objective function is positive.
Next, if LP3 has an optimal solution u and v for which the objective function is positive, then

Au - Bv = 0
—eTu + eTv = 0
u>0,v>0.
Since eTu + eTv > 0, then either u or v has at least one positive entry. But eTu = T v implies
that each u and v must have at least one positive entry. Therefore,
0<u#0,and0<v#0.
Thus system I has a solution. So, conv(.4) N conv(B) # @ by Proposition 3.1. |

Now consider LP3 in the following format

max eTu + eTv

subject to
Au - Bv = 0
—eTu + v = 0
—-u > —-e
-v 2 -—e
v>0,v20.



We shall now express LP3 in the symmetric dual form. This requires several rewrites of LP3 as follows:

max eTu + eTv
subject to

Bv

Bv

eTv

CT‘U

Au

—Au

—eTu
eTu

u

I+ 4+
ININIAININIA
® 0 OO0

v

v>20,v2>0

max eTu + eTy

subject to

o |
o
RS
|
QQ
N
—
o @
| IU— |
|
0 60 OO0

v>20,v20
Hence, the dual of LP3 has the symmetric primal form
min Ty + eTw

subject to

AT AT _¢ ¢ T 0
-BT BT ¢ -e 0 I

fewR &8

(]

220,y20,a>0,820,z>0,w>0

or

min eTy +eTw

subject to
AT(z—2) - (a=Ple + y >
—BT(z-2) + (a-Ble + w 2>

£220,y20,020,620,220,w20

and finally, lettingc=z~zandy=a - g

10



LP4
min eTy+eTw
subject to
ATe = ve + y > e
—BTc + e + w > e
y20,w2>0

We then have the following proposition:

Proposition 3.7 Conv(A) N conu(B) =@ if and only if LP4 has an optimal solution for which the objective
function has value 0.

Proor:

It follows from the Fundamental Duality Theorem of Linear Programming and from Propo-
sition 3.6 that: conv(A) N conv(B) # @ if and only if LP4 has an optimal solution for which
the objective function is positive. (Notice that for any feasible solution ¢,~,y, and w of LP4 it
follows that eTy + eTw > 0.) Thus, conv(A) N conv(B) = @ if and only if LP4 has an optimal
solution for which the objective function has value 0. |

In addition, the plane H(c,v) := {z : ¢cTx = v} separates the sets A and B where (c,7, y, z) is any solution

of LP4. To see this, define
H,v)={z=Iz1...2,)T : Tz = v}

Note that
ATe>e+ve—yand BTc < —e+ve +w.
But
y=w=0if eTy+eTw=0.
Therefore,

ATe> e+ ve > ve and BTc < —e+ ve < ve.

Hence, the plane r7c = v separates the sets A and B. In fact it strictly separates the sets A and B.
The following two propositions in this section form the foundation of a degeneracy procedure which is
used in the algorithm to follow in the next section. They are taken from Mangasarian [5].

Proposition 3.8 If conv(A) N conv(B) # @, then at least one of the systems

Au = B.j, for somej € {l,...,k}
eTu =1
u 2 0
or
Bv = A, for somej€{l,...,m}
efv = 1
v 2 0

13 inconsistent.

1



Proor:

Suppose that all of the above systems are always consistent. If the first system is always
consistent then
B.j€ conv(A)Vj=1,...,k

Hence,
B C conv(A).
Likewise, if the second system is consistent V5 = 1,... ,m, then
A C conv(B).

But this means that
conv(B) C conv(A) and conv(A) C conv(B),i.e.,

conv(A) = conv(B). Pick an A.; € A that is an extreme point of conv(.A). Since A.; = Bu,
eTv =1 for some v > 0, and each B.; € conv(A), it follows that A.; = B.; for some k, i.e.,

v = [0...010...0]T where the nonzero coordinate of v is in the k-th coordinate. This is a
contradiction since AN B = @ in this paper. Hence, at least one of the systems in inconsistent
for some j.

Proposition 3.9 If conv(A) N conv(B) # 0, then one of the following systems

e - 8 >0
ATe - ae > 0
—BTc + B > 0 for somej
—-e<c<e
or
a - 8 > 0
AT.%C - a > 0 for somej
—B'c + fBe 2 0
-e<c<e

is consistent.

ProOF:
Without loss of generality we can assume from Proposition 3.8 that a system of equations of
the form
Au = B
eTu = 1
u>0

which may be written

has no solution.
From the Farkas Lemma, we know that

T T
[31'] yZO,[ Bl’] v < 0 has a solution.

12



This may be written as

[ 4T e][_ﬂ]zo,[B’"-j ll[fk]<°’whe“=[—3]

or
(1) ATz = Xe >0, BT.;z — X <0 has a solution.

We know z # 0, since if 2 = 0, then
-de>0and -A<0

or
Ae <0and A > 0.

But e is a vector of ones, so we obtain
A <0 and A > 0, which is a contradiction.

Now set
1 A

c= a= ,ﬁ:BT.,-c

ma.x|z.-|z’ max | z; |

After dividing each equation in (1) by max| z; | and substituting ¢, and « into (1), we obtain
ATe - ae > 0
~BT.;c + a > 0 forsomej

In addition, substituting 8 for BT.jc in the last inequality yields o — 3 > 0.
Also, note that max | 2; |> 0 and max | 2; |> z;. Therefore

-e<c<e.
So
o - B > 0
ATe - e > 0
—BT.jc 4+ (4 > O0forsomej
—e<c<e

has a solution if (1) has a solution. In a similar fashion we can prove that if

Bv = A.; for some j
eTv = 1
v > 0

has no solution,

then
! - g > 0
AT, %c — a 2 0 for some]j
—Bfc¢ 4+ pe > 0
—-e<c<e

has a solution.

13



4 The Main Results

The previous linear programs are not guaranteed to form a plane that will partially separate 4 from B when
their convex hulls intersect. By imposing a nonzeroness condition on the normal to the separating plane, c,
the partial separation of A and B can be assured. The following nonconvex linear program can be solved in
polynomial time.

LP5
min —a+ 4
subject to
ATe - ae > 0
-BTec 4+ Be > 0
Il ¢ lloo =1

Theorem 4.1 Problem LPS5, with rational entries for A and B can be solved in polynomial time by solving
the 2n linear programming problems, each of the form found in LP6, for i =1,2,... ,n and taking the solu-
tion with the least —a + B among the 2n solutions of LP6.

LP6
min 0Tc —a + 4
subject to
ATe —~ ae > 0
—BT¢c + Be > O
c 2> -e
c < e
Ci = =1
Proor:
For each i = 1,... ,n solve the two linear programming problems
LP6.1
min 0Tc—a + 3
subject to
ATc - ae > 0
-BT¢ 4+ Be > 0
c 2 -—e
c < e
¢ = 1
and
LP6.2
min 0Tc-a + 8
subject to
ATe = ae > 0
-BTec + Be > 0
c > -—e
c < e
Ci = -1

14



For the two solutions compute the corresponding value of the objective function, 0Tc — a + B.
Let ¢, a‘, and §° denote the solution that yields the smallest value of —a+0. Nextlet ¢, &, and
be any solution of LP5. Since || ¢ ||o= 1, it follows that each c¢*,o*, and §* is a feasible solution
of LP5 and

(1 ;

—@+ < min {-a'+8':1=1,...,n}.

Since || € [[insty= 1, we have that 31 € {1,... ,n} such that & = +1 while -1 < ¢; < 1 for all
j =1,...,n. Thus, ¢ a,and f§ is a feasible solution of one of the linear programming problems
LP6. In particular,

-a'+4' <-a+p.
Thus,
(2)

min {-o' +8':1=1,... ,n} < -a+45.
Combining (1) and (2) we have that

_&+B= min {—al-}-ﬂ':I: 1,... ,n}.

Therefore, when min {—a' +01=1,... ,n}= —ah + %, then c, a”, and 8" solves LP5.
Since 2n LP’s are needed to compute (c,a”, %), and each LP is solvable in polynomial time,
then LP35 is solvable in polynomial time by solving the 2n linear programs of LP6. We can now
outline an algorithm for discriminating between two disjoint point sets .4 and B represented by
the matrices A € R™*" and B € R¥*",

Algorithm 1

1. Set j = 0,.A°;= A, A% = A,B° = B,B® = B, and input an integer jmax. Solve LP2. If the
min of LP2 is negative, stop, the plane

separates A and B.

2. For each i = 1,... ,n solve LRG.I and LP6.2. Let c¢',a‘, and 8 denote corresponding
solutions of LP6.1, and ¢~},a~%, and 8~* denote corresponding solutions of LP6.2. For
each i compute

(i) cardinality {r : AT..¢' < 8} + cardinality {s: B7.,c' > o'}

Likewise for each i compute

(ii) cardinality {r : AT..c™* < 87} + cardinality {s: BT.,c™* > a™'}.

Define i(j) to be the minimum of the 2n values in (i) and (ii), and let ¢*9), a*), and g*9)
be a solution of the corresponding LP6 that yields i(j).

Comment ’£his step picks the LP6.1 or LP6.2 for which the closed set between the parallel
planes ¢z = o/ and D"z = B contains the least number of points from A’ and

BJ , while the open half spaces outside this region separate the remaining portions of A’
and B/,

15



3. Let
AIFL = {Ar € A | AT & < [3!'(.7')}

and
B/*! = (B., € B/ | BT.,c'D) > o'V}
If AV+! # A7 or B! £ BF go to (5).

4. Degeneracy Procedure: Find a column A., of 47 (case a) or column B., or BJ (case b) such
that when LP2 is solved with A = A., and B = B’ (case a) or A= A’ and B = B., (case
b) the minimum of LP2 is negative. In either case denote the solution of the LP by (¢, &, 8).

Case a: Define ¢'V) = ¢, o' = —00, g =3, B =B,
A = {Al | A;e A, AxTE < B},

Case b: Define ¢/¥) = ¢, o'() = &, ) = 0, A7+ = A, B+ = {B; | B; € B/, B c > &}

Comment: This degeneracy procedure eliminates at least one point from A7 or B and thus
ensures that either A7*! # A7 or B/*! # B/, It is based on Propositions 3.8 and 3.9.

5. Save the planes
2Teil) = i) and 276D = g
6. If A7t! = Bi+! = (), replace jmax by j and stop. If j = jmaz stop, else increment j by 1
and go to (2).

When A and B are not linearly separable the previous algorithm constructs a sequence of
parallel planes:

2T = gil) 2T = oi) j = 0,... ,jmaz

such that if jmax is sufficiently large, the sets .A and B are separated by the following procedure.

PROCEDURE: Set j = 0, input jmax and a given pattern z7 € R"™.
1. If j = jmaz, go to (4).

2. If 270 > ﬂ':(-’:), then z € A, stop.
If z7¢'0) < i), then z € B, stop.

3. Increment j by 1 and go to (1).
4. If zT¢0) > %M, the z € A, stop.
If 270D < MJ—), then z € B, stop.

16



The following sets were separated, with the help of the linear programming software package
Lindo, using the previously described algorithm.

A= {[13]7,[2 77,3 47,[3 10],[6 5)7}

Therefore,
1 23 3 6
A= [ 374105 ]
B={[47)7,[5 10,9 8"}
Therefore,
4 5 9
B= [ 7 10 8 ]
Let R ' '
A= {AT-r | AT.,-C:E' < 'B:hl}
and X ] .
B={B".,| BT.,c* > oa%}
(2) c = 1
a=-33333
B = 6.33333 f} = {A1., A2, A3, A4, A5}
=1 B = {Bl.,Bz.,Ba.}
¢y = —.33333
C = -1
a=-8 R
ﬁ =-7.5 f} = {Az.,A3.,A4.,A5.}
G = —1 B = @
Cy = -5
Cr = 1
a=28 i
,5:9 4={A1.,A2.,A3.,A5.}
ca=-2 B= {Bl.,Bz.,Ba.}
C2 = 1
Cy = -1
a=-13

B=-11 A={4, 45}
= -1 B = {Bl}

Cg=-—1

1

Therefore, ('), '), gi0)) = ([ :1 ] ,-13,-11)
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(3) Now

(4) Save the planes

—T) — I = ~13 and - =2 = -11

(1)
min of LP2 = —.8 with

a = 9
8 = 8.2
G = 1
Cr = .6

Therefore, the plane z; + .6z, = 8.6 separates the previous A and B.
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Separation of Sets A and B using Multisurface
Method of Pattern Separation
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5 Applications

This method of pattern separation is currently in use at the University of Wisconsin Hospitals
to aid in the diagnosis of breast cancer. A fine needle aspirate is taken from a patient and
nine measurements are made. These nine measurements are: clump thickness, size uniformity,
marginal adhesion, cell size, shape uniformity, bare nuclei, bland chromatin, normal nucleoli and
mitosis. Each of the nine measurements is designated by an integer between 1 and 10, with larger
numbers indicating a greater likelihood of malignancy. The discriminant function constructed,
which is based on algorithm 1, has been applied to 369 points, 168 of which come from patients
with confirmed malignancy. Algorithm 1 generated four pairs of parallel planes which completely
separated the benign samples from the malignant ones. The resulting discriminant function can
instantly classify any sample point given to it in R?. So far, 45 new sample points have been
encountered since the construction of the discriminant function, and all were classified correctly
[1].

Another possible application of this method is in the acceptance of students to college. Schools
must accept many more students than they have space for since many of those students will
attend school elsewhere. The difficulty lies in determining the yield of students. Students decide
which college to attend based on many factors, including: location, academic reputation, cost,
financial aid and size. Each of these variables, and several others, could be assigned a value and
a discriminant function could be constructed which separates students based upon the likelihood
they would attend a particular college. This would aid the admissions office in deciding who, and
how many students to accept.
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