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Analyzing and Extending an Infeasibility
Analysis Algorithm

Ammar H. Malik

Illinois Wesleyan University, Bloomington IL 61701, USA
amalik@iwu.edu

Abstract. Constraint satisfaction problems (CSPs) involve finding as-
signments to a set of variables that satisfy some mathematical con-
straints. Unsatisfiable constraint problems are CSPs with no solution.
However, useful characteristic subsets of these problems may be ex-
tracted with algorithms such as the MARCO algorithm, which outper-
forms the best known algorithms in the literature. A heuristic choice in
the algorithm affects how it traverses the search space to output these
subsets. This work analyzes the effect of this choice and introduces three
improvements to the algorithm. The first of these improvements sacri-
fices completeness in terms of one type of subset in order to improve the
output rate of another; the second and third are variations of a local
search in between iterations of the algorithm which result in improved
guidance in the search space. The performance of these improvements
is analyzed both individually and in combinations across a variety of
benchmarks and they are shown to improve the output rate of MARCO.

1 Introduction

Constraint satisfaction problems (CSPs) are found in a vast array of computer
science and math fields from artificial intelligence to operations research to hard-
ware verification. CSPs may be unsatisfiable (have no solution); they are then
termed infeasible constraint systems. Infeasibility Analysis is a growing research
field that deals with analyzing known infeasible CSPs and extracting useful in-
formation from them. The two types of information we focus on here are MUSes
(Minimal Unsatisfiable Sets) and MCSes (Minimum Correction Sets). Briefly,
MUSes provide reasons behind the infeasibility of a CSP while MCSes provide
corrections to it, the removal of even one MCS making the rest of the problem
satisfiable. We define these and related terms more formally in section 2 and
expand upon what we consider the ‘search space’ for these outputs in section 3.

MARCO is a recently published[9] algorithm that enumerates these outputs.
Moreover, it has been shown to outperform the best known algorithms for such
purposes, namely Dualize and Advance [2] and CAMUS [10]. We expand upon
MARCO in section 4 and analyze and validate a heuristic choice made in the
original paper (section 5.1). MARCO’s extensibility in allowing modifications to
parts of its search procedure while allowing the rest of the algorithm to function
properly is one of its defining features. We exploit this feature in section 5 by



presenting extensions to its search features that hope to improve the algorithm’s
performance. The improvements include pruning the search space (section 5.2)
and variations of using local search to guide the algorithm towards desirable
outputs (section 5.3). Section 6 details the extent of these improvements by dis-
playing the results of an empirical analysis of the algorithm and the extensions
we suggested. Finally, we conclude by construing the impact of these improve-
ments in section 7 as well as suggesting possible avenues for future research.

2 Preliminaries

Constraint Satisfaction Problems (CSPs) are defined as a combination of math-
ematical constraints on a set of variables. The constraints add restrictions to
the values these variables can be assigned. For example: for a variable x ∈ R, a
simple constraint could be a mathematical inequality:

x ≤ 2

A conjunction of constraints make up a constraint satisfaction problem. A so-
lution to a CSP is then an assignment to all the variables in the problem that
satisfies all of its constraints.

Boolean Satisfiability Although MARCO and its extensions presented here can
be applied to any generic CSP, the implementation and results shown are done
on a branch of CSPs called Boolean Satisfiability Problems (termed SAT). SAT
problems are defined on Boolean variables that can be assigned only 1 (true) or
0 (false) values. A SAT constraint is then defined on a subset of the Boolean
variables. The constraint is satisfied if a single variable in the constraint satisfies
the constraint. A constraint C can either make a truth implication (represented
as x ∈ C), where x = 1 satisfies the constraint, or a false implication (represented
as ¬x ∈ C), where x = 0 satisfies the constraint. For example, a constraint over
two variables x, y ∈ {0, 1} can be defined as such:

(x ∨ ¬y)

In the above constraint, either x = 1 or y = 0 will satisfy the constraint re-
gardless of the value of the other variable. Therefore, a constraint is essentially
a non-exclusive ‘or’ between the value implication of each variable in the con-
straint. A collection of such constraints make up a SAT problem. An assignment
to the problem is an n-tuple representing assignment values for the variables in
the problem. A problem is considered satisfiable if there exists an assignment
that satisfies all of its constraints. It is considered unsatisfiable or infeasible if
no such assignment exists. Note that a SAT problem can have more than one
satisfying assignment.

SAT Solvers The problem of determining the satisfiablity of a SAT instance
is fairly well known. Extensive research has yielded impressive results in this
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field and the culmination of these efforts can be found in software termed ‘SAT
solvers’. The MARCO algorithm is designed to make use of a SAT solver as an
oracle, as a means of testing whether a subset of the problem is satisfiable or
not. We used MiniSAT [6] as the particular SAT solver for our implementations
and results. While the algorithm makes no assumptions about the particular
implementation details of MiniSAT, an analysis into a heuristic leads us into a
specific feature of it termed Bias (section 5.1). However, the feature (or some
viable alternative) is fairly common among most SAT solvers.

Infeasibility There exist real world problems that, when modeled as SAT prob-
lems, are found to be unsatisfiable. Infeasibility Analysis deals with such unsat-
isfiable constraint systems and seeks to extract useful subsets of the problem. A
subset of the problem is defined to be any set S ∈ P (C) where C is the set of
all constraints and P (C) is its power set. Any subset is then a combination of
some of the constraints from the CSP. The subset itself may be SAT or UNSAT
depending on if there exists a satisfying assignment for only the constraints in
the subset. We thus define certain subsets of interest:

1. A subset M ∈ P (C) is an MUS (Minimal Unsatisfiable Set) iff:
(a) M is UNSAT, and
(b) ∀Ci ∈M : M \ {Ci} is SAT.

2. A subset M ∈ P (C) is an MSS (Maximal Satisfiable Set) iff:
(a) M is SAT, and
(b) ∀Ci ∈ (C \M) : M ∪ {Ci} is UNSAT.

3. A subset M ∈ P (C) is an MCS (Minimum Correction Set) iff:
(a) the set C \M is an MSS.

MUSes can be seen to be a “core” reason behind an instance’s infeasibility.
Since they are minimal subsets that are unsatisfiable in and of themselves, they
naturally contain a conjunction of constraints that make it impossible for any as-
signments to satisfy the MUS and consequently the entire SAT problem. MSSes,
on the other hand, are large cardinality satisfiable subsets that are maximal in
the sense that addition of a single new constraint makes them unsatisfiable. The
Maximum Satisfiability Problem (MaxSAT) is the problem of finding the largest
satisfiable subset of a Boolean CSP. MaxSAT solutions represent the largest
cardinality MSSes, and finding MaxSAT solutions has seen a lot of research
in recent times[5,14,8]. However, an MSS may have a lower cardinality than a
MaxSAT solution. Finally, an MCS is the complement of an MSS. Therefore, the
removal of an MCS from the problem set yields a satisfiable subset, hence the
label “correction set.” Moreover, it is a minimal correction set in the sense that
the removal of an element from an MCS would no longer make it a correction
set.

We now provide an example of a Boolean SAT problem and its respective
MUSes/MCSes in order for the reader to understand the relation between these
subsets and the entire set of constraints. Consider a SAT problem defined on
three variables x1, x2, x3 ∈ {0, 1} with the following constraints:
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C1 C2 C3 C4 C5 C6
(x1) (¬x1) (¬x1 ∨ x2) (¬x2) (¬x1 ∨ x3) (¬x3)

The problem will then have the following MUSes, MCSes and MSSes (note
how MCSes are complements of MSSes):

MUSes Explicit Constraints
{C1, C2} {(x1), (¬x1)}
{C1, C3, C4} {(x1), (¬x1 ∨ x2), (¬x2)}
{C1, C5, C6} {(x1), (¬x1 ∨ x3), (¬x3)}

MCSes MSSes
{C1} {C2, C3, C4, C5, C6}

{C2, C3, C5} {C1, C4, C6}
{C2, C3, C6} {C1, C4, C5}
{C2, C4, C5} {C1, C3, C6}
{C2, C4, C6} {C1, C3, C5}

Note how (x1) and (¬x1) each require an opposing value of x1 to be satisfied.
Therefore, {C1, C2} is an MUS since it is unsatisfiable but C1 and C2 are sepa-
rately satisfiable. Moreover, this combination of constraints explains one of the
‘reasons’ for the infeasibility of the instance. This is made more evident by the
fact that {C1} is an MCS, which implies that its exclusion renders the rest of
the CSP satisfiable. With C1 excluded, finding a satisfying assignment to the
remaining problem is straightforward. The value x1 ← 0 satisfies constraints C2,
C3 and C5. Similarly, the values x2 ← 0 and x3 ← 0 satisfy constraints C4 and
C6 respectively. Therefore, we have found an MUS explaining the infeasibility
and a constraint C1, the removal of which corrects the remaining CSP or makes
it satisfiable. Similar arguments could be made for the remaining MUSes and
MCSes.

3 Search Space

Consider a Constraint Satisfaction Problem with C constraints. The set of all
possible subsets of the problem is the power set of constraints P(C). We denote
this set the search space for the problem. We can define a partial order (based
on inclusion) on elements of the search space which allows us to represent it as
a lattice figure known as a Hasse Diagram. Figure 1 shows a Hasse diagram of
three constraints with each possible subset a ‘node’ in the diagram. If a subset
A is linked to a subset B in the diagram, where B lies above A in the structure,
then A ⊂ B. In addition, there exists an element x ∈ B such that A = B \ {x}.
Thus, moving ‘up’ in the diagram represents the addition of a single element to
the subset, and moving ‘down’ the removal of one.

A subset is either satisfiable (SAT) or unsatisfiable (UNSAT) depending on
the constraints within it. This allows us to group subsets into satisfiable and
unsatisfiable subsets. Moreover, the search space can then be partitioned into two
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{C1, C2, C3}

{}

{C1, C2} {C1, C3} {C2, C3}

{C1} {C2} {C3}

Fig. 1. Hasse diagram of 3 constraints

regions, a satisfiable region containing SAT subsets and an unsatisfiable region
containing UNSAT subsets. Since the input problems in infeasibility analysis
are unsatisfiable, we know that they necessarily contain at least one satisfiable
subset (the subset containing the empty set i.e no constraints) and at least one
unsatisfiable subset (the entire input problem). Moreover, note the following
properties about subsets:

Property 1. If A is unsatisfiable and A ⊆ B, then B is unsatisfiable.
Property 2. If A is satisfiable and B ⊆ A, then B is satisfiable.

The removal of a constraint(s) from a satisfiable set cannot make it UNSAT as
any satisfying assignment to it will also satisfy all of its subsets. Similarly, if there
doesn’t exist a satisfying assignment to a set, the addition of more constraints
means the lack of a satisfying assignment still holds true. With these proper-
ties, we can thus separate the diagram shown in figure 1 into two graphically
distinguishable regions; a satisfiable and an unsatisfiable region. For example,
consider a problem defined on variables x1, x2 ∈ {0, 1} with the following three
constraints:

C1 C2 C3
(x1) (¬x1) (x2)

Then, we can split its respective Hasse diagram into SAT and UNSAT re-
gions as shown in figure 2. Note that while the diagram in figure 1 depends only
on the number of constraints as it does not make any assumptions about their
satisfiability, figure 2 requires the actual constraints in order to color the regions
into satisfiable (yellow) and unsatisfiable parts (orange). Having split the search
space in this way, it is easier to ‘see’ how MUSes and MSSes satisfy their respec-
tive minimality in UNSAT regions and maximality in SAT regions. In short, any
local high point in the SAT region for which its supersets exist entirely in the
UNSAT region is an MSS (its complement being the MCS). In figure 2, subsets
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{C1, C2, C3}

{}

{C1, C2} {C1, C3} {C2, C3}

{C1} {C2} {C3}

UNSAT

SAT

Fig. 2. Hasse diagram with marked SAT/UNSAT regions

{C1, C3} and {C2, C3} are MSSes. Similarly, any local low point in the UNSAT
region for which its subsets exist only in the SAT region is an MUS. In figure 2,
the subset {C1, C2} of the problem set is an MUS.

4 The MARCO Algorithm

MARCO is an acronym for “Mapping Regions of Constraint sets” [9]. It uses a
novel approach to mapping the regions of the search space in order to enumerate
MUSes and MCSes. In order to better understand the algorithm, we approach
it in parts: extracting a characteristic subset (section 4.1), mapping the search
space (section 4.2) and finally putting it all together (section 4.3).

4.1 Extracting a characteristic subset

Given a starting point in the search space, denoted a seed, there are two main
methods of obtaining a characteristic subset. A characteristic subset is an MUS
or an MSS (from which we can obtain an MCS easily). If the seed lies in the
SAT region, then it is possible to add elements to it such that it becomes an
MSS. This is termed growing the seed to an MSS. Likewise, if the seed lies in the
UNSAT region, it is possible to remove elements from it such that it becomes
an MUS. This is termed shrinking the seed to an MUS. A basic implementation
of growing and shrinking can be seen in the grow(seed, C) and shrink(seed, C)
functions in figures 3 and 4 respectively.

The grow function takes a satisfiable seed subset and the entire constraint
set C as input parameters. Note that seed represents a point in the SAT region of
the search space. As a result, there necessarily exists an MSS that is a superset of
seed. M is used as a local variable that is assigned the value of seed. Iterating over
each constraint c not in M , the grow function repeatedly checks if the addition
of the constraint c to M alters the satisfiability of M . If the resulting subset
M ∪ {c} remains satisfiable, the constraint c is added to M . This represents
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grow(seed, C)
input: A satisfiable subset seed
input: The set of all constraints C
output: An MSS M

1. M ← seed

2. foreach c ∈ (C \M):
3. if M ∪ {c} is satisfiable:
4. M ←M ∪ {c}
5. return M

Fig. 3. grow returns an MSS

shrink(seed, C)
input: An unsatisfiable subset seed
input: The set of all constraints C
output: An MUS M

1. M ← seed

2. foreach c ∈M :
3. if M \ {c} is unsatisfiable
4. M ←M \ {c}
5. return M

Fig. 4. shrink returns an MUS

moving one node ‘up’ in a Hasse diagram (hence the term grow). Otherwise,
if M ∪ {c} is unsatisfiable, it is discarded, and M remains unchanged for that
iteration. This continues until all constraints not in seed have been checked in
this manner. For the resultant set M , the addition of any further constraints
would make it UNSAT, it is therefore an MSS by definition.

On the other hand, the shrink function takes an unsatisfiable seed subset
in addition to C as input parameters. Here, seed represents a point in the UN-
SAT region of the search space. Again, M is used as a local variable that takes
the value of seed. Iterating of each constraint c in M in this case, the shrink
function repeatedly checks if the removal of the constraint c from M results in
an unsatisfiable subset. If the resulting subset M \{c} remains unsatisfiable, the
constraint c is removed from M representing a move ‘down’ in a Hasse diagram.
Otherwise, M remains unchanged. After all constraints c ∈M have been checked
in this fashion, the algorithm returns the modified (unless seed was an MUS to
begin with) subset M . Since any further removal of constraints from M would
make it satisfiable, M is an MUS by definition.

However, it is important to note that MARCO implements the grow and
shrink phases as separate modules. Different algorithms for these functions can
then be used in place of grow and shrink as long as they match input and
output parameters. Moreover, this allows MARCO to use any state-of-the-art
MUS extraction algorithm as shrink, a problem with active research across a
variety of fields [4,7,12].

4.2 Mapping the Search Space

The MARCO algorithm seeks to explore the search space, and output all the
MUSes and MSSes of the problem it represents. A brute force approach would
be to check each subset in the search space in order. However, this approach
is grossly inefficient; the elements in the search space are exponential in the
number of constraints, 2n for n constraints to be precise. One potential method
of exploring the search space is repeatedly picking random seeds, and successively
growing or shrinking to an MSS or an MUS respectively. The drawback to this
approach, however, is exploring paths that lead to a previously found outputs.
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Moreover, since multiple seeds may lead to the same output, the probability
of finding a seed that leads to a new output decreases over time. The MARCO
algorithm avoids this problem by keeping track of the previously explored and
the remaining unexplored parts of the search space.

MARCO makes use of a separate constraint system called map to keep track of
these regions of the search space. Specifically, map maintains a Boolean function
over the search space: f : P(C) → {0, 1}. The Boolean variables in map have
a one-to-one correspondence with the constraints of the original problem. We
show this by continuing the simple example from section 3:

Variables of CSP {x1, x2}
Constraints of CSP {C1 ← (x1), C2 ← (¬x1), C3 ← (x2)
Variables of map {X1 ↔ C1, X2 ↔ C2, X3 ↔ C3}

This allows assignments in map to represent subsets of the original problem.
We consider a true value assignment of a variable of map to correspond to an
inclusion of the matching constraint in the subset. Similarly, a false value in a
particular assignment to a variable of map indicates the exclusion of the corre-
sponding constraint from the subset. Since an assignment means every variable
of map is assigned a Boolean value, each constraint of the CSP is included or
excluded from the corresponding subset based on that value. Therefore, every
assignment identifies an exact point in the search space. Similarly, each point in
P(C) is mapped to a corresponding assignment of map.

Constraints in map restrict certain assignments from satisfying this Boolean
function. Thus, we further specify the subsets corresponding to assignments that
do not satisfy map as having been explored. Likewise, subsets corresponding to
assignments that do satisfy map are considered unexplored. For example, consider
a subset S ∈ P(C) and the Boolean function f that map maintains. If S satisfies
map:

f(S) = 1
then S belongs to the unexplored region of the search space. Likewise, if S does
not satisfy map:

f(S) = 0
then S has already been explored. In addition, when we refer to a subset satisfy-
ing map, we will use this to mean that the subset’s corresponding assignment (of
map’s variables) satisfies map. Moreover, we refer to the term blocked to indicate
one or more subsets having been explored, with blocking being the addition of
the constraint to map that actualizes this.

Consider again the example CSP given above. With no constraints in map,
the entire search space is unexplored (figure 1) as any assignment satisfies map.
Now, suppose we add the following constraint to map:

map← (X2)

Then, considering the corresponding constraint (C2), we can split the search
space into explored and unexplored regions. This is shown in figure 5. Note that
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since the constraint implies the inclusion of C2, any subset containing C2 is
considered unexplored and therefore, its corresponding assignment satisfies map.

{C1, C2, C3}

{}

{C1, C2} {C1, C3} {C2, C3}

{C1} {C2} {C3}

unexplored

explored

Fig. 5. Hasse diagram with mapped explored/unexplored regions

Notice that map will be empty at the start of the algorithm, and becomes
successively more constrained as more and more of the search space is explored.
To that end, one possible way to keep track of explored regions is to add a
restriction to map for each subset explored by MARCO. This approach is still
inefficient, however, as it requires us to visit each node in the search space in
order to fully explore it. Since the goal of the algorithm is the extraction of
characteristic subsets, we can block additional subsets that we know not to be
a characteristic subsets without having explored them. This comes as a direct
consequence of the properties defined in section 3. By Property 1, if M ⊆ C is an
MUS (and thus unsatisfiable), then all supersets of M are unsatisfiable as well.
Since supersets of M are unsatisfiable, they cannot contain an MSS. Moreover,
since an MUS cannot be a proper superset of another MUS, it follows that
supersets of M do not contain any MUS as well. Therefore, we know supersets
of M do not contain any characteristic subsets. Then the following addition to
map blocks all supersets of the MUS:

map← map ∧

{ ∨
Ci∈M

{¬Ci}

}

The constraint implies the mandatory exclusion of at least one constraint from
the MUS M from a satisfying assignment’s corresponding subset. Since all su-
persets of M contain the entirety of its constraints, none of them can satisfy this
constraint and are thus blocked. Similarly, all subsets of an MSS cannot contain
characteristic subsets as they are satisfiable (no MUSes), the MSS itself, or a
proper subset of the MSS (no MSSes). Therefore, the subsets of the MSS may
be blocked together. Let M ⊆ C be an MSS, then the following addition to map
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blocks all subsets of the MSS:

map← map ∧

 ∨
Ci /∈M

{Ci}


The above constraint implies that at least one constraint not in MSS M must be
included in any satisfying assignment’s corresponding subset. Since any subset of
M contains only constraints that are contained within M , the restriction imply-
ing inclusion of a constraint not in M forces all subsets of M to not satisfy map.
They are then considered blocked. For example, consider the MSS {C1, C3} from
figure 2. The above rule implies a conjunction of all constraints not in the MSS
be added to map. The addition of {C2} to map yields the explored/unexplored
regions shown in figure 5 which shows the MSS and all its subsets having been
blocked.

4.3 The Algorithm

MARCO
input: Unsatisfiable constraint set C
output: MUSes and MCSes of C

1. map ← BoolFormula(nvars = |C|)
2. while map is satisfiable:
3. S ← map.getModel()
4. if S is satisfiable:
5. M ← grow(S, C) / S has been grown to an MSS M

6. output C \M / C \M is then an MCS
7. map← map ∧ {(C \M)} / Blocks down from an MSS
8. else:
9. M ← shrink(S, C) / S has been shrunk to an MUS M

10. output M

// Given M = {M1 ∨M2 ∨ ... ∨Mk}:
11. map← map ∧ {¬M1 ∨ ¬M2 ∨ ... ∨ ¬Mk} / Blocks up from MUS

Fig. 6. The MARCO algorithm for enumerating MCSes & MUSes of a constraint set.

The complete pseudocode for MARCO is shown in Figure 6. The algorithm
starts with the creation of the map constraint set (line 1). The map instance starts
out with variables corresponding to constraints of the original problem set C and
no constraints of its own. The algorithm then repeatedly loops until map is no
longer satisfiable. Within the loop, since map is satisfiable, a model is generated
from the solver instance (line 3). The model is the satisfying assignment that the
solver used to obtain the fact that the problem was satisfiable. This model (like
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any other assignment) has a corresponding subset that is then tested against
the original constraint set which returns whether it is satisfiable or unsatisfiable.
If it is satisfiable, then the model’s corresponding subset belongs to the SAT
region of the search space. As a result, it is grown to an MSS (line 5). Since
the output specification includes MCSes, the algorithm converts this MSS to
an MCS by taking a complement against the entire constraint set (line 6). All
subsets of the MSS are subsequently blocked (line 7). On the other hand, if the
model’s corresponding subset ends up being unsatisfiable, then it belongs to the
UNSAT region of the search space. It is thus shrink-ed to an MUS (line 9) which
is output. In addition, all supersets of the MUS are blocked (line 11). All possible
conditional flows within the loop lead to map being modified by the addition of
more constraints. As the loop returns for the next iteration, map is checked again
for satisfiability. The program exits when map no longer remains satisfiable. At
this point, all elements of the search space have been explored, thus all MUSes
and MCSes have been output by MARCO.

5 Extending and Improving MARCO

With an idea of how the algorithm works, we now present variants and extensions
that can improve the performance of MARCO. Most of these improvements find
one of MUSes or MCSes faster at the expense of the other. In addition, the
improvements also have dual implementations in the sense that we can swap
which of MUSes or MCSes we want to find faster at the expense of the other.
These improvements can be applied to MARCO individually or all together, albeit
some may work to the detriment of others. We explore the potential combinations
in the experiments in Section 6.

5.1 Bias

Before moving on to extensions, a closer look at SAT solvers provides greater in-
sight into the search mechanics of MARCO. When initializing the solver (MiniSAT
[6] in our implementation), each variable is added separately with the option to
introduce a ‘bias’. The bias acts as a default value for that variable. As a result,
in the inner decision making processes of the SAT solver, variables tend towards
their bias values although not restrictively so. Therefore, in terms of the solver,
the bias is not an assumption about the value of the variable, and rather more
of a ‘suggestion’ that the solver will use if no other constraints restrict it from
doing so. Since we are dealing with Boolean variables, the bias is restricted to
Boolean values as well.

We focus on bias in the map instance of the solver. This is because bias here
affects the search mechanism and can thus act as a heuristic choice that directs
how the search space is explored based on biased values of constraints of C
(variables of map). While each variable may have an independent bias, we focus
on all variables having the same bias: true or false. In terms of map, a true bias
implies the inclusion of the constraint while a false bias implies exclusion when
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map seeks to find a satisfying solution. We also use the terms high and low bias
to refer to true and false biases respectively as it links to the visual imagery
of a distributive lattice structure of the search space (figure 2). Note in the
figure that high cardinality subsets, with more ‘included’ constraints, appear
near the top of the figure. A high bias map is more likely to find unexplored
subsets higher up in the diagram. Similarly, low cardinality subsets, with more
‘excluded’ constraints, appear near the bottom of the figure. A low bias map is
more likely to find unexplored subsets lower down in the diagram.

To illustrate in detail, consider the first iteration of the algorithm. map is
unconstrained and thus any bias results in an assignment matching the bias
values as any assignment is a satisfying assignment. A high bias will then tend
towards the inclusion of all constraints, and an assignment to map would be
produced matching this bias. The resulting subset would be the entire problem
set C. Similarly, a low bias will tend towards the exclusion of constraints, and
the resulting subset would be the empty set ∅. Moreover, the effect of bias
pervades the first iteration as subsets found in later iterations will be affected
as well. While it is not possible to predict the exact subset found, we can make
some general claims about how the search will be directed. Since we are dealing
with necessarily UNSAT instances, note that large cardinality subsets are more
inclined to be UNSAT due to their higher likelihood of containing an MUS, while
smaller cardinality subsets are likely under constrained and thus SAT. Therefore,
having a bias of elements towards inclusion or exclusion will make it more likely
for subsets found in each iteration to be UNSAT or SAT respectively.

MARCO was introduced in the previously published work with a true bias so
as to make it more inclined towards an output favoring more MUSes. In Section
6, we validate this choice with experiments that test MARCO and its variants
with both high and low biases. However, the bias mechanism is not limited to
merely all low- or all high-biased variables. The ability to give different variables
different biases, and to do so dynamically, could be exploited in future work
to further enhance the heuristic and potentially to adapt MARCO to specific
applications.

5.2 MUSOnly

An improvement over the MARCO algorithm that we will call MUSOnly in-
volves blocking down upon finding an MUS, similarly to how it already blocks
down upon finding an MCS (see figure 5). This extra step excludes all subsets of
an MUS from the search space. Since all subsets of an MUS are, by definition,
satisfiable, blocking these subsets does not block any other MUSes. However,
an MSS may be a subset of an MUS, and therefore be blocked without hav-
ing been explored. Therefore, while the further reduction of the search space
can speed up the search for unique MUSes, we sacrifice completeness in finding
MSSes/MCSes as a consequence. Since applications tend to require only one of
MUSes or MCSes (see dual MCSOnly), the lack of completeness in finding the
other does not impinge upon the usefulness of this extension.
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In terms of implementation, a small modification to MARCO can yield this
improvement. The pseudocode in figure 6 can be modified to reflect this: MARCO
blocks down(subsets) from an MSS on line 7, and up(supersets) from an MUS
on line 11. The addition of a line in the same scope after line 11 that is exactly
the same as line 7 will result in blocking subsets of an MUS, completing the
variant.

MCS exclusion We use a simple example to illustrate the lack of completeness
in finding MSSes (and subsequently MCSes). This approach could exclude an
MCS/MSS from being found when an MSS of the problem is a subset of some
MUS. Consider a Boolean SAT instance with the following constraints:

C1 C2 C3 C4 C5
(x1) ∧ (x2) ∧ (¬x1) ∧ (¬x2) ∧ (¬x1 ∨ ¬x2)

Then, we have the following MUSes:

MUSes
{C1, C3}
{C2, C4}
{C1, C2, C5}

and the following MSSes:

MSSes
{C1, C2}
{C1, C4, C5}
{C2, C3, C5}
{C3, C4, C5}

Note that {C1, C2} ⊆ {C1, C2, C5}. Therefore, if the MUSOnly version of MARCO
were to find the MUS {C1, C2, C5} before finding the MSS {C1, C2}, it would
block all subsets of {C1, C2, C5} and never find that MSS.

MCSOnly is a dual version of the MUSOnly extension. Geared towards a
primary purpose of obtaining MCSes, we block up whenever we find an MSS
similarly to how it already blocks up upon finding an MUS. This step will then
exclude all supersets of the MSS from the search space. Again, the focal point
of this extension is the fact that an MSS cannot be a superset of another MSS.
However, it is possible that an MUS is a superset of the MSS, and therefore we
sacrifice completeness in obtaining MUSes as a result of this extension. We will
see the impact of this extension in enumerating MCSes in the results section.

5.3 MCSGuided and MCSGuided++

The nature of the MARCO algorithm ensures that we cannot guarantee that it
only produce MUSes. Therefore, when it happens to produce an MCS and we
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are primarily concerned with finding MUSes, currently, it blocks subsets of the
corresponding MSS and continues in the next iteration from a different point
in the search space. However, the MSS provides potentially useful information
that can be exploited; for example, all supersets of the MSS are necessarily
UNSAT. We make use of this fact in improvements that we dub MCSGuided
and MCSGuided++.

Both MCSGuided and MCSGuided++ influence the next iteration of the al-
gorithm by making use of the MCS found to provide potential UNSAT seeds for
the newer iterations. Since we know by definition that addition of any element
to an MSS makes it UNSAT, an MCS(MSS) being found means we can add
elements to it and use the modified subset as a seed for the next iteration. Note
that this is simply using a superset (of which there could be many) as a seed
for the next iteration. However, we must also ensure that these supersets of the
MSS have not previously been blocked (explored) and relevant checks against
map ensure that. Notice that, provided at least one superset of the MSS has
not yet been explored, this extension ensures an MUS output in the very next
iteration after an MSS/MCS has been found.

MARCO (additions marked with J, unchanged lines have original line numbers)

J seeds ← Queue()
1. map ← BoolFormula(nvars = |C|)
2. while map is satisfiable:
J if seeds is empty:
3. S ← map.getModel()
J else:
J S ← seeds.pop()
4. if S is satisfiable:
5. M ← grow(S, C)
J seeds.push( mcsguided(M , C, map) )

...

Fig. 7. Modifications to MARCO for the MCSGuided/MCSGuided++ extensions

Figure 7 shows the relevant portions of MARCO with additions marked by
J that add the MCSGuided feature. The algorithm maintains a queue to store
seeds being generated by the guidance from MCSes. More specifically, after
the algorithm finds itself in the growing phase and outputs an MSS, the very
next step involves calling the mcsguided (figure 8) function on line 5. The
mcsguided function returns a single unsatisfiable seed, which is then added
to the seeds queue. In the subsequent iteration, the seeds queue will override
asking the solver for a seed, and thus the seed is later found to be unsatisfiable. In
addition, when we know we are using a seed from the seeds queue, we can skip
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checking for its satisfiability and skip straight to the shrink phase. (This change
is not shown in the pseudocode, but it is included in our implementation.)

MCSGuided++ extends this concept by using all supersets of the MSS that
are not blocked as seeds. The modifications to the pseudocode would be nearly
identical to figure 7, the only difference being a call to mcsguided++ in place of
calling mcsguided on line 5. The mcsguided++ function may return multiple
seeds, and thus it affects more than just the next iteration.

mcsguided(M , C, map)
input: unsatisfiable constraint set C
input: Boolean formula map
input: an MSS M of C
output: one new seed subset
1. for c ∈ C \M :
2. if M ∪ {c} is SAT in map:
3. return M ∪ {c}

mcsguided++(M , C, map)
input: unsatisfiable constraint set C
input: Boolean formula map
input: an MSS M of C
output: a set of new seed subsets
1. seeds ← {}
2. for c ∈ C \M :
3. if M ∪ {c} is SAT in map:
4. seeds← seeds ∪ {M ∪ {c}}
5. return seeds

Fig. 8. Helper functions for MCSGuided and MCSGuided++

Pseudocode for themcsguided andmcsguided++ helper functions is shown
in Figure 8. They are similar in terms of implementation. Both continually check
if the result of adding new elements to the MSS is constrained (blocked) by map.
The difference lies in where they return. While mcsguided returns at the first
UNSAT seed found that is yet to be explored,mcsguided++ seeks all unexplored
supersets of the MSS, and adds them to the seeds queue before returning.

MUSGuided and MUSGuided++
A dual approach to this extension could generate new known-SAT seeds from

any MUS found. Like with the MSS, we know that any subset of an MUS is nec-
essarily SAT and therefore can act as a seed to be eventually grown towards
an MSS. This would also require a check to ensure the subset of the MUS had
not previously been explored in the search space. We show in Section 6 how
MCSGuided helps improve MUS output rate, and how MUSGuided helps im-
prove the MCS output rate similarly.

We extend MUSGuided similarly to howMCSGuided is extended to MCSGuided++
by enabling the use of a queue and placing all unexplored ‘subsets’ of the
MUS in the queue as potential seeds. MUSGuided++ is then the dual of the
MCSGuided++ variant. It is important to note that we use the same queue
for both variants to enable the use of local search to exhaustively explore all
close regions in both SAT and UNSAT portions of the search space. This allows
us to create new variants in various combinations of mcsguided, musguided,
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mcsguided++, and musguided++. Again, we see how each of these combinations
affect output enumeration rates in the results section.

6 Empirical Analysis

The experiments were conducted on a collection of over 300 Boolean SAT in-
stances used in the MUS track of the 2011 SAT Competition. [1]. SAT competi-
tions contain a wide variety of problem instances modeling real world problems
to test the latest improvements in the field. The instances, which are infeasible,
were collected from existing problems to test single-MUS extraction algorithms.
We used a C++ implementation for MARCO and all its variants (section 5) for
these experiments. In addition, the implementation makes use of the MUSer2
MUS extraction software [3] for the shrink function, made possible by MARCO’s
extensibility as explained in section 4.1. Underlying the algorithm is a SAT solver
that acts as an oracle for SAT checks and generating models for satisfiable sub-
sets; our solver of choice is MiniSAT v2.2 [6]. The experiments were run in Linux
on 3.4GHz AMD Phenom II CPUs with a 3600 second timeout and a 1.8 GB
memory limit. Of the 300 instances, the MARCO algorithm is unable to find a
single MUS within the time limit in 56 cases or a single MCS in 45 cases. There-
fore, the output results below show measure performance on the remaining 244
and 255 instances for MUSes and MCSes respectively.

Unsatisfiable constraint sets may be highly complex, with the number of
MUSes and MCSes reaching exponential sizes in proportion to the constraint
set [10]. As a result, extracting these characteristic subsets is a generally in-
tractable problem that cannot be expected to complete under any realistic time
restrictions. In fact, during our experiments, over 90% exceed the time limit.
Therefore, total runtime to completion is not a useful metric when extracting
information from highly intractable problems. ‘Information’ here is the genera-
tion of any MUS or MCS regardless of whether the algorithm runs to completion.
As a result, the metrics we measure are rates of MUS and MCS enumeration.
Dealing with such intractable output sizes was one of the weaknesses of earlier
algorithms: CAMUS required enumerating all MCSes before a single MUS was
generated, and thus a large number of MCSes acted as a bottleneck when seek-
ing to output MUSes; for DAA, the size of a set of intermediate results quickly
exhausted memory limits. MARCO is free from such restrictive measures and can
enumerate both MUSes and MCSes in intractably large problem sets. We thus
measure performance as the rate at which it generates these outputs irrespective
of the total output size.

We compare the performance of variants of MARCO by comparing their re-
spective enumeration rates. Since either of the variants might improve one of
the output metrics (MUSes or MCSes) at the expense of the other, we split
our experiments into those seeking to optimize MUS output rates (section 6.1)
and those for MCS output rates (section 6.2). The graphs we present in this
section are log-log scatter-plots comparing outputs of two variants, each repre-
sented along one of the axes. Each instance is tested on both the x-axis variant
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Fig. 9. #MUSes: High vs Low Bias
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Fig. 10. #MCSes: High vs Low Bias

and the y-axis variant and the number of outputs for each variant represents
its x-offset and y-offset respectively. A point on the diagonal thus represents
an equal number of outputs across both variants. A point below the diagonal
represents a relatively greater x-offset (compared to the y-offset) indicated more
outputs for the x-axis variant. Likewise, a point above the diagonal represents
better performance by the y-axis variant. Moreover, we use logarithmic scales
in order to account for the highly variable number of outputs across different
instances. The logarithmic scales necessitate mapping the 0 value to 0.1 in order
to represent an output of 0 on the graph (i.e., when no MUS/MCS is found).
While individual performances on instances might be split in terms of which
variant performs better, we aggregate the extent of these improvements over all
instances in order to determine the ‘better’ variant near the culmination of each
of sections 6.1 and 6.2.

Search Biases We start by comparing the output rates of MARCO based on the
‘bias’ heuristic choice we defined in section 5.1. The original presentation used a
high bias for MUS enumeration and we corroborate its effectiveness here. A high
biased version (y-axis variant) of the original algorithm is compared, in terms of
MUS enumeration, against a low biased version (x-axis variant) in figure 9. A
cursory look reveals a majority of the instances represented above the diagonal
indicating that a high bias outperforms a low bias in the number of MUS output.
Moreover, a majority ( 75%) of the instances lie on the y-axis indicating cases
where the high bias variant found at least one MUS while the low bias variant
found none. This dominance is likely due to the high bias variant having favored
UNSAT seeds which led to a greater number of shrink phases which, in turn,
resulted in more MUSes. However, there do exist some cases where the low bias
variant outperforms the high bias variant in obtaining MUSes. In fact, these
cases are more prevalent in instances with a larger number of MUSes. Future
work could explore the reasons behind this occurrence, however, it is obvious
from the graph that the high bias variant outperforms the low bias variant in
the general case.
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Fig. 11. MUSOnly: High vs Low Bias
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Fig. 12. MUSOnly vs Original

Similarly, the converse holds for the effect of low bias on finding MCSes which
is shown in figure 10. A large number of instances, in this case, lie on the x-axis
indicating non-zero MCS outputs for the low bias variant and no MCSes for
the high biased variant. A low bias favors smaller cardinality seeds, which are
more likely to exist within the SAT region (see section 5.1) and this resulted in
more grow phases for the low bias variant, which in turn led to more MSS (and
MCS) outputs. However, unlike in figure 9, the dominance here is more absolute
as only a handful of instances exist above the diagonal which can be explained
as likely edge cases.

Having seen how bias affects output rates, we move on to analyzing performance
of the extensions to the original algorithm. We take into account the result of
the bias heuristic choice when comparing variants. We favor high bias variants
for MUS enumeration and low bias variants for MCS enumeration. However,
this does not guarantee that a high or low bias will always outperform the other
in terms of its favored output as modification may affect the high-bias MUS or
low-bias MCS dominance. Therefore, we include ‘high vs low’ comparisons in
order to justify using a particular bias in an extension variant when comparing
it against the original algorithm. Since the variants often improve one of MUSes
of MCSes at the expense of one another, we analyze performance for each of
these outputs separately. We seek to optimize performance in terms of MUS
enumeration in section 6.1 and MCS enumeration in section 6.2.

6.1 MUS Output

MUSOnly The MUSOnly extension (section 5.2) blocks particular SAT regions
of the search space whenever it finds an MUS. Blocking more SAT regions makes
it more likely for MARCO to generate a seed in the UNSAT region. More UNSAT
seeds lead to a greater number of shrink phases and thus more MUS outputs.
Both high and low bias versions of the MUSOnly extension are compared against
each other in figure 11. The high bias variant is, expectantly, the dominant
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Fig. 13. MCSGuided: High vs Low Bias
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Fig. 14. MCSGuided vs Original

version, outperforming the low bias variant in terms of MUS enumeration. We
thus compare the high biased variant of MUSOnly against the high biased variant
of the original algorithm (which we have shown to be better than the low bias
variant in figure 9). The comparison results are shown in figure 12 and show a
definite improvement of the extension variant over the original as more instances
clearly lie below the diagonal. One interesting observation is that instances with
a higher number of MUSes show MUSOnly to be more dominant. This is likely
due to the benefits of trimming the search space more decidedly outweighing
the cost of the additional constraints that they require. Moreover, note (figure
11) that unlike the original (figure 9), the MUSOnly low bias variant is not
favored for high MUS instances and this contributes to a better performance by
MUSOnly for these high MUS instances. The net effect of the improvement is
analyzed later in this section when we aggregate results for all variants.

MCSGuided The MCSGuided extension (section 5.3) makes use of MSSes(MCSes)
to generate UNSAT seeds in order to better facilitate MUS enumeration. As a
result of the improvement, finding an MSS directly leads to an MUS in the very
next iteration if a superset of the MSS consists of an unconstrained UNSAT seed.
This affects the high vs low bias comparison a great deal as low bias variants
favoring MSSes are potentially linked to finding MUSes, in a sense mitigating
the problem of finding MUSes in low biased variants. The high and low biased
variants of MCSGuided are compared and the result is shown in figure 13. The
instances seem to be closely placed around the diagonal except for some cases
where the benefits of MCSGuided fail to have any effect and they fail to find
any MUSes. These are instances where a low bias variant acts against the ar-
rangement of the search space and the intractability of the problem is more
realized. For instances where both versions find an MUS, their respective points
seem fairly evenly distributed across the diagonal. However, since a high bias
performs better in the general case, we compare this variant against the original
algorithm in figure 14. The effect of the improvement seems far more pronounced
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Fig. 15. MCSGuided+MUSOnly: High vs
Low Bias

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

O
ri

gi
n

al
, H

ig
h

 B
ia

s 
 (

#M
U

Se
s)

 

MUSOnly, MCSGuided, High Bias  (#MUSes) 

Fig. 16. MCSGuided+MUSOnly vs Orig-
inal

here than in MUSOnly with a greater number of points lying below the diago-
nal. Again, we see the overall effect later in the section when we aggregate the
relative performance across all instances.

MCSGuided + MUSOnly The improvements we have presented so far are not
mutually exclusive, allowing us to add both to the original algorithm. Like in
the previous extensions, we start with a comparison of the high and low biased
variants. This is shown in figure 15 and, almost exactly, matches the correspond-
ing comparison for MCSGuided (figure 13). As the high biased variant performs
better on average, we compare it against the high biased variant of the original
algorithm in figure 16. The scatter of instances in the graph matches closely
with the performance comparison of MCSGuided (figure 14) suggesting that
MCSGuided is the more effective extension in this variant and dominates the
search procedure. There are subtle differences, however, and their effect is shown
when we aggregate results later in the section.

MCSGuided++ The final improvement we suggest for MUS enumeration is MCSGuided++
(section 5.3). This variant extends the MCSGuided variant by exhausting any
UNSAT seed options provided by every single MSS. However, the extra steps
and constraint checking used to exhaust these options often ends up being more
costly than just using one UNSAT seed per MSS like in MCSGuided. The differ-
ence is very obvious in the comparison of high and low biased variants in figure
17 where a high bias variant completely outperforms low bias variant in stark
contrast to the respective graph for MCSGuided (figure 13). As a result, we
use the high biased variant in a comparison against the original algorithm. The
comparison against the original algorithm is shown in figure 18 and it likewise
shows a less extensive improvement over the original than the previous variants;
however, an interesting characteristic in this figure is that an instance rarely
performs worse than the original algorithm unlike previous variants which show
some degree of variance in this regard.
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Fig. 17. MCSGuided++: High vs Low Bias

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

O
ri

gi
n

al
, H

ig
h

 B
ia

s 
 (

#M
U

Se
s)

 

MCSGuided++, High Bias  (#MUSes) 

Fig. 18. MCSGuided++ vs Original

Aggregate Results While a scatter of values on a graph can indicate general
trends on which variant performs better in a one-on-one comparison, compar-
isons between more than two variants are harder to display. As a result, we
aggregate performance over all instances under a commonly used metric. For
each instance, we can represent performance as a ratio of the number of outputs
of the variant to the number of outputs of the original algorithm. A value of 1
would then represent the same number of outputs for both and would be a point
on the diagonal in the corresponding scatter-plot. Additionally, this makes the
ratio independent of the specific number of outputs for that instance. We use
a geometric mean to aggregate such ratios across all instances for each of the
variants. Table 1 shows these ratios averaged over 244 instances for which at
least one MUS was found. By this metric, the MCSGuided variant performs the
best with a 42% increase in MUSes output over the original algorithm.

Table 1. Geometric mean of ratios: #MUSes output by each variant vs original

#MUSes Ratio:
Variant Variant / Original

MUSOnly 1.195
MCSGuided 1.423
MCSGuided+MUSOnly 1.342
MCSGuided++ 1.228

Beyond the overall increase in performance, it is helpful to note how many
instances actually experienced an increased or decreased output. Thus using the
same ratios from the previous aggregation, we use counts of particular interest
to us instead of calculating a geometric mean. In this case, we count the number
of instances over which output increased, decreased, doubled, halved, etc. This
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Fig. 19. Original (Low Bias) vs MCSOnly
(Low Bias)
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Fig. 20. Original (Low Bias) vs MCSOnly
(High Bias)

is shown in table 2 for each of the extensions. The bolded values indicate the
most increases (or fewest decreases) for each particular count. The results show
that MCSGuided has the greatest number of instances with a general increase
in output while MCSGuided++ has the fewest instances with a general decrease
in output.

Table 2. Number of instances with increases, decreases in #MUSes vs original

#MUSes Ratio:
Variant <¼ <½ <1 >1 >2 >4
MUSOnly 3 7 56 99 29 17
MCSGuided 5 13 72 104 61 39
MCSGuided+MUSOnly 7 14 76 105 53 32
MCSGuided++ 0 0 31 96 30 12

6.2 MCS Output

MCSOnly The MCSOnly extension (Section 5.2) acts as ‘dual’ to the MUSOnly
extension and blocks particular UNSAT regions of the search space whenever it
finds an MSS. Blocking more UNSAT regions makes it more likely for MARCO
to generate a seed in the SAT region which would lead to more grow phases and
MCSes. Figure 19 shows the comparison of a low biased MCSOnly variant against
the low biased original version. Any improvements are scarce, as most points lie
on the diagonal. In fact, when we aggregate results later in the section, we find
MCSOnly actually decreases performance over the original. For comparison’s
sake, we include a graph (figure 20) showing the comparison of a high biased
MCSOnly variant against the original (low biased). The unique changes from
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Fig. 21. MUSGuided vs Original (both low biased)

MCSOnly do not fail to affect the dominance of low bias in heavily outperforming
the higher biased version in terms of MCS enumeration. The few instances where
the high biased variant manages to outperform the low biased one are similarly
matched in the original high vs low comparison (see figure 10) and thus are
unrelated to any changes in MCSOnly.

MUSGuided The MUSGuided extension similarly follows as a dual of the MCSGuided
extension (section 5.3). It uses MUSes to generate SAT seeds in order to improve
the likelihood of obtaining MSSes from grow operations. In fact, given that it can
find an unconstrained SAT seed as a subset of the MUS, MUSGuided will find
an MSS (and thus MCS) in the very next iteration of MARCO. The MUSGuided
with a low bias outperforms the high biased variant and therefore we compare
it against the original in figure 21. A majority of the points lie on the diagonal,
however, in case of instances with a large number of MCSes, the MUSGuided
variant seems to outperform the original. While the extent of the increased per-
formance is unclear, it seems definite that there is an increase in performance
over the original. We analyze the aggregated impact of the extension later in
this section.

MUSGuided+MCSGuided This is a particularly interesting combination of vari-
ants that resulted from the following thought experiment:

1. An MUS is found.
2. Subsets of the MUS are satisfiable.
3. An unconstrained SAT subset is picked as a seed. (MUSGuided)
4. The seed is put through a grow function.
5. An MSS is found.
6. Supersets of the MSS are unsatisfiable.
7. An unconstrained UNSAT superset is picked as a seed. (MCSGuided)
8. The seed is put through a shrink function.
9. Repeat from 1.
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Fig. 22. Original (Low Bias) vs
MUSGuided+MCSGuided (Low Bias)
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Fig. 23. Original (Low Bias) vs
MUSGuided+MCSGuided (Low Bias)
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Fig. 24. MUSGuided++ Low vs High Bias
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Fig. 25. Original (Low Bias) vs
MUSGuided++ (Low Bias)

The starting point of this variant may be from 1. or 5. depending on whether
an MSS or MUS is found first. Although the probability of so many seeds being
unconstrained is low, it has the potential to make use of both, the MCSGuided
and MUSGuided extensions. We run this ‘extension’ with both high and low
biased variants and compare the output against the original algorithm. The
high biased variant against the original (with a low bias to favor MCS output)
is shown in figure 22 while a low biased variant is compared to the original in
figure 23. Unfortunately, the method does not perform well against the original
and in fact, does worse than the original algorithm in finding MCSes or MUSes
with either bias. However, on the few instances where it outperforms the original
in MCS enumeration, it also outperforms other variants with a relatively greater
increase in the number of outputs. This is indicated when we consider the number
of instances over which the variant performs twice as well as the original later
in this section.
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MUSGuided++ MUSGuided++ acts similarly to its counterpart in MUS enu-
meration. It exhausts all subsets of an MUS in the search for SAT seeds to
increase MCS enumeration. Low and high biased variants of the extension are
compared in figure 24. The low biased variant outperforms the high biased vari-
ant and therefore, we compare it against the original in figure 25. Its performance
against the original is similar to MUSGuided’s performance with a majority of
the instances lying on the diagonal and a few large MCS instances showing a
performance gain.

Aggregate Results We use similar aggregation metrics for MCSes that we used
when comparing MUS enumeration rates. Table 3 shows the geometric mean
of the ratios averaged over the 255 instances for which at least one MCS was
found. All variants shown are low biased (as they tend to favor MCS enumera-
tion) except where explicitly mentioned. In this metric, the MUSGuided variant
performs the best, with an 11% increase in MCS output rate over the original
algorithm.

Table 3. Average ratio of #MCSes output by each variant vs original

#MCSes Ratio:
Variant Variant / Original

MCSOnly 0.925
MUSGuided 1.106
MUSGuided+MCSGuided 0.200
MUSGuided+MCSGuided (high bias) 0.218
MUSGuided++ 1.101

Again, we tabulate information to show how many instances actually expe-
rienced an increase or decrease in output rate compared to the original. Table
4 shows this information. We similarly group instances where performance in-
creased, decreased, doubled, halved, etc. The bolded values indicate the most
increases (or fewest decreases) for each particular performance count. In partic-
ular, MUSGuided appears to be the best performing with the most number of
instances outperforming the original and the least having performed worse than
the original. An intriguing thing to note is how MUSGuided+MCSGuided (true
bias) has the greatest number (although only about 10% of the instances) of in-
stances on which it performed over 200% to over 400% better than the original
algorithm. However, overall, it decidedly performs worse than the original which
is plainly evident from table 3.

7 Conclusion

The extensible nature of MARCOmakes it convenient to make changes in specific
parts of the search mechanism without affecting how the rest of the algorithm
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Table 4. Number of instances with increases, decreases in #MCSes vs original (low
bias)

#MCSes Ratio:
Variant <¼ <½ <1 >1 >2 >4
MCSOnly 5 13 108 88 5 2
MUSGuided 1 2 70 122 16 10
MUSGuided+MCSGuided 124 147 178 50 21 10
MUSGuided+MCSGuided (high bias) 125 147 175 61 28 18
MUSGuided++ 1 2 68 117 11 7

operates. This allows us to optimize the algorithm in favor of certain outputs,
namely MCSes or MUSes. In this paper, we demonstrate precisely this. In ad-
dition to these optimizing improvements, we validate a heuristic choice made
about the search bias in the original implementation of the algorithm. We show
how a high bias leads to an MUS favorable output while a low bias leads to an
MCS favorable one.

The MARCO algorithm is targeted towards large constraint systems where
finding all MUSes/MCSes is not viable under any realistic time constraint.
Therefore, the enumeration rate of MUSes/MCSes determines the performance
of the algorithm in relation to the improvements we suggest. The first improve-
ment, MUSOnly, makes use of the fact that for any particular application, it is
only important to obtain one of MUSes/MCSes and therefore, if we block all
known SAT regions of the search space as soon as we can make such a distinc-
tion, the algorithm spends more time exploring the UNSAT region thus finding
more MUSes. The same would appear to hold theoretically for UNSAT regions
and MCSes, but the experiments show no improvement and we explain why that
is so. MCSGuided, the second improvement, makes use of the fact that having
found an MCS/MUS, using a random seed in the next iteration ignores valu-
able information about the satisfiability of its subsets/supersets. We use this
information to generate a seed for the next iteration of the algorithm depending
on our output specification. The third improvement, MCSGuided++, naturally
extends from MCSGuided as we exhaust all possible ‘local’ seeds before asking
the solver to generate a random one.

The improvements that we outline outperform the original algorithm with
MCSGuided performing the best of the lot in terms of MUS enumeration with
a mean improvement of 42%.For MCS enumeration, the results are not as pro-
nounced; however, having explored the theoretical duals of the improvements for
MUS enumeration is significant in itself. The fact that MCS enumeration rates
remain fairly constant while MUS enumeration rates are affected with similar
changes belies the duality that exists between them.
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7.1 Future Work

To conclude, we have shown improvements to MARCO and outlined its extensi-
bility. As a result, several avenues of research in improving MARCO still remain
open. Specific directions for future work might include:

1. Looking into possible combinations of biases rather than configuring them
all to be high or low. This could produce variability and add more specificity
into where the search ‘tends’ to based on certain types of problems. For
example, for a problem where you expect the MUSes to be of a certain
cardinality, dynamically allocating bias so as to induce seeds of (or near)
that cardinality would help improve enumeration rates by cutting down on
grow/shrink times.

2. More tightly integrating and sharing information between the map solver and
the CSP.

3. Comparing the performance of MARCO’s MCS enumeration with that of
existing algorithms [11,13].

4. Investigating the differences between MCS and MUS enumeration in MARCO
and why they respond differently to similar modifications. Exploring in
greater depth the duality that exists between them and using all the previous
MUSes/MCSes found by MARCO to improve ‘guessing’ at future seeds.

5. Putting forth additional completeness relaxations and analyzing respective
performance trade-offs. For example: combinations of MUSOnly and MCSOnly,
or blocking from non-characteristic subsets, i.e., greedily blocking to reduce
the size of the unexplored search space in order to speed up enumeration
rates.
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