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Abstract 

Acetylcholinesterase is the enzyme that catalyzes the hydrolysis of 

acetylcholine. Based on the transition state of the catalysis, and what is known about 

the structure of the enzyme, a synthetic study has been conducted on an 

organophosphorous inhibitor which is capable of probing into the stereospecificity 

of the enzyme. The asymmetric synthesis was initiated with I-proline, and several 

methods were employed in phosphorylation in order to get the desired product. 
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Introduction 

Target Compound 

The goal of this research is to synthesize an inhibitor of 

acetylcholinesterase (AChE) that is an organophosphorous (OP) analog of the 

transition state in the catalysis of acetykholine(ACh). In the past,OP 

compounds have been used as AChE inhibitors, but an attempt has been 

made to syn~esize one which would allow the study of the conformation of 

the catalytic s,:!bsite and give insight into the sterospecificity of the enzyme. 

The more an OP compound resem~lesthe tetrahedral transition state of the 

catalysis of ACh, the better inhibitor it can be. In ACh, the nitrogen is two 

camons away from the oxygen, so the OP compound must also have the and 

oxygen and nitrogen atoms two camons away from each other. To account for 

some special features of the enzyme, it is desired that the nitrogen be 

represented as a quarternary ion substituted with alkyl groups. This 

compound would be stable in the environment of the catalytic site, and 

would have a specific chirality. The use of a compound with a 

conformationally constrained nitrogen, which would prevent free rotation, 

will be helpful in studying the stereochemistry of the enzyme. The use of a 

phosphotylcholine compound chiral at the beta carbon and at the 

phosphorous will provide insight into the conformation of the active site, as 

it binds to the molecule. 

Current Target Compound 
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ACh and AChE 

In order to synthesize the inhibitor, it is important to have 

information about the structure of the enzyme and its substrate. ACh is a 

neurotransmitter which functions .in the central and peripheral nervous 

systems. It is responsible for the transmission of action potentials across 

nerve synapses as well as neuro-muscular junctions. The enzyme AChE is 

responsible for the regulation of ACh. This control is necessary because a . 
bOOd-up C!f the neurotransmitter would mean a constant firing of neurons, 

which is extremely dangerous, and could ultimately lead to death. AChE 

catalyzes the hydrolysis of ACh into choline and acetic acid. AChE is present 

in the synapses, and choline is reasorbed by the pre-synaptic cell to be re-used. 

ACh binds to cholinergic receptors located on the the post-synaptic neuron. It 

is stored in vescicles before release which is triggered by nerve action 

potential in a fixed quantities. Exocytosis of the ester is initiated by axon 

terminal depolarization, and mediated by synaptic calcium levels1. The 

binding to the receptors marks the initiation of post-synaptic activity. Since 

nerve impulses are extremely fast, there has to be a mechanism of 

destruction of the transmitter. This is the role of AChE. 

A Schematic of the Acetylcholinesterase (AChE) Actiye Site 

- AChE is the enzyme responsible for the hydrolysis of 
acetylcholine (ACh) a neurotransmitter 

Glu 

- ACh is hydrolyzed into choline and acetic acid 
3 

For a review of AChE see: Quinn, D.M. Chern. Rell. 1987,87,955. 
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Structure 0 f AChE 

AChE is thought to have three major domains: the esteratic site, the 

anionic bindingsite, and a hydrophobic region. There is considerable debate 

over the existence of the anionic binding site. Early kinetic studies indicated 

that the active site of AChE contained only the esteratic subsite and the 

anionic subsite2• Recently x-ray analysis by Sussman3 et al was used to 

determine the three dimensional structure of the enzyme. It revealed some 

interesting things. First, it was found that the esteratic site contains 

glutamate: serine, and histidine as the acid catalytic triad. This is similar to 

the serine proteases, but G1u takes place of an Asp, and the position of the 

catalytic portion seems t~ be a mirror image of what is seen in the serine 

proteases. It was previouslybelieved hat the anionic subsite binds to the 

charged quartenary group of the choline moiety, but studies by Cohen and 

Hasan4 suggest otherwise. On the basis of studies in which both charged and 

uncharged homologs were used, it was found that the so called anion 

binding site is in fact uncharged and hydrophobic. Hasan correlated the 

partial molal volume of the beta substituent and the rate, and proposed that 

the enzyme binds the choline moiety with a hydrophobic trimethyl binding 

site. It was the presence of the three methyl groups not the charge that was 

important. 

Crystallographic analysis reveals the the active site lies at the bottom of 

a deep narrow gorge which reached halfway into the protein.3 The active 

site gorge, a 20A long channeL penetrates halfway into the enzyme where the 

active site is contained. 14 aromatic residues line about 40% of the gorge. 

The aromatic content of the waDs and the floor of the gorge may explain why 
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biochemical studies have revealed a variety of hydrophobic and anionic sites 

separate from or overlappng the active site. The geometry of the gorge can 

also give clues as to how certain inhibitozs behave by blocking or penetrating 

the gorge. The aromatic lining could guide the ACh, once trapped on top of 

the gorge, rapidly down to the active site. There are only a small number of 

negative charges, but there are many aromatic residues near the catalytic 

site and on the walls of the gorge which lead down to it. It is thought that the 

aromatic lining may permit the use of a mechanism involving initial . 
absorptio~ of ACh to low affinity sites, followed by two dimensional 

diffusion to the esteratic site, a sort of aromatic guidance mechanism. 

Although this suggests that the anionic site is misnamed, it is important to 

note that the depth of the gorge and the extent of the aromatic residues lead 

to the many 4i£ferent ways and places for substrate, agonists, and inhibitors to 

bind to AChE. 

Those who are convinced of the existence of a tnte anionic locus, have 

it located 47 angstroms away from the esteratic subsite, and it is thought to 

contain multiple negative charges. Their reply5 to previous the work 

previously mentioned is that there is indeed transfer of substrate from 

solution to a lipid-like environment, but there is no reason to assert that the 

existence of the hydrophobic regions is the actual binding site for the 

trimethylammonio moiety of the choline. There is evidence of the anionic 

site based upon interaction of the enzyme with various types of compoWlds 

including aromatic cations, tetraaJkylammonium salts, aziridinium covalent 

modifying reagents, bisquatemary ammonium compounds that span the 

anionic locus (both peripheral and of the active site), and pyridinium 

reactivators. 

5 



The Catalytic Mechanism 

The general mechanism by which ACh is hydrolyzed is similar to that 

of a serine protease. There are, however numerous features of AChE that are 

different from the serine proteases as revealed by x-ray structural analysis. 

The catalysis involves an acylenzyme mechanism that has the hydroxyl 

group of a serine residue acting as a nucleophile, and an imidazole ring of a 

histidine residue acting as a general add-base catalyst6. After the acylenzyme 

is formed, as ACh attaches to the enzyme, the choline separates from the 

acetyl group. -The deacyJation step occurs and the enzyme is reactivated. 

C \ CH3c~:~~ ... 0:t~ .~ ifrO
- H a 
HN~J ? " - '-0 HN~N:HN~(;H ~ 

H3C-Ni-CH3 
+ 

H3C-Ni-CH3 CH 
CH3 CH3 . H3C-N+~OH 

CH3 Choline 

cf r4 I~ bn OH=-f"l ?=O CQ~ .~ 
HN~N: IJ 

q 

HN N+-H +HN~N:~U 'CH3/0 ° H ,AOH 

6 
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The Kinetic Mechanism 

The kinetics of this process follow an induced fit mechanism, where 

acylation and deacyltion both contribute to the rate limitation. First, there is 

an equilibrium in the formation of the Michaelis complex. Then, there is 

another equilibrium to form the induced-fit complex. The fact that there 

were two equilibria before the formation of the acylenzyme,led to the belief 

in the existence of the anionic site. The acylenzyme is formed with the 

removal of the choline, and in the presence of water, deacylation occurs. An 

induced-fit mechanh;m implies that the substrate binds to the enzyme and a 

conformational change occu1's befose any catalysis6• 

" Acyleazyme Meclumlsm for AChE Catalysis 
! . . ..•.• "H '. , 

:,Im:J .' .....Im:-/.',...........O-H
 
r ·.cr•• lIon , .. ,"~ 

AChE..........O_·~· t~ChE~~:~~CH~·~'·' 

+ ". HOCHaCHa~Mes. II 
"83NCHaCHaOCCHs . ' ,0 ,. II' 
0,~cylenzyme 

SCHEME II. Klaetlc Mechaalsm for AChE Catalysis that 
Incorporates aa ladu~-Flt Step . . 

~1 . ~I '.t. ~4'" ' 

E + S ~_l·.ES, ~_I'ESa, ,EA ~ E+ p 2., 

P, 

E ~·:hE. S· substrate. EA. acylenzyme. P , .P2 • products.
OtherOPCompounds ESI' Michaelis complex. ES a ' induced-fit complex 

It has been known for a long time that OP compounds are potent 

nerve poisons7• OP compounds inhibit AChE by phosphorylating it. Some 

are the extremely toxic nerve gases such as Sarin, Soman, and Tabun. Others 

are used as insecticides, Parathion, Malathion, and OMPA. There is a series of 

related synthetic compounds which are carbamates that reversibly bind to 

AChE. These are used clinically, and some examples are: Physostigmine, 

7
 



Table 22-2. CHEMICAL CLASSIFICATION OF REPRESENTATIVE ORGANOPHOS.
 
PHORUS COMPOUNDS OF PARTICULAR PHARMACOLOGICAL OR
 

TOXICOLOGICAL lNl'EREST
 

-
R

1
" ~O 

General formula (Schrader, 1952): /\ 

R2 X 
Group A, X = halogen, cyanide, or thiocyanate; group B, X = alkyl, alkoxy, or aryloxy; 

group C, thiol- and thionophosphorus compounds; group 0, pyrophosphates and similar com­
pounds; group E, CJ.uaternary ammonium compounds 

Parathion, Thiophos, E 60S 
(see list of trade names in text) 

c 
e. DiethyIO-(4-nitrophenyl) 

phosphorothioate 

EPN 
O-EthyIO-(4-nitrophenyl) 

phenyl-phosphonothioate 

Widely employed agricultural 
insecticide, resulting in 
numerous cases ofaccidental 
poisoning 

Widely employed agricultural 
insecticide 

Malathion 
O,O-Dimethyl S·(1,2·dicarbe­

thoxyethyl) phosphorodi­
thioate 

TEPP 
Tetraethyl pyrophosphate 

OMPA, Schradan 
OctamethyJpyrophosphortetr:unide 

Echothiophate.E/ 
Phospholine~ 217MI 
Diethoxyphosphorylthiocholine 

iodide 

Widely employed insecticide of 
greater safety than parathion or 
EPN because of rapid 
metabolism ~y higher organisms 

.Early insecticide; tested clinically 
in glaucoma and myasthenia 
gravis 

Insecticide; inactive in vitro, but 
metabolized by animals and 
plants to potent anti.ChE agent 

Extremely potent choline deriva: 
tive; employed in treatment. 01 
glaucoma; relatively stable 10 
aqueous solution 
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Neostigmine, and Pyridostigmine. Besides that there are OP compounds 

which are employed clinically to treat such maladies as glaucoma such as 

Echothiophate, and DFP, and it is believed that anti-choJinesterase agents may 

be therapeutically useful in treating symptoms of Alzheimer's Disease. 

Inhibition By OP Compounds 

When an OP compotmd is presented to AChE, the serine will attack 

the carbonyl-analog phosphorous, and instead of acylation, phosphorylation . 
will occur.. From here, several things can happen. It could stay as a phospho-

enzyme for an indefinite period of time. It could irreversibly inactivate it in a 
" 

process called aging, where a specific group is lost and the enzyme is unable to 

be reactivated. Or it could undergo reactivation. The inhibition of AChE by 

OP compoWlds is very stereoselective, but previous studies regarding toxicity 

and stereospecificity show no trend. Therefore, individual compounds have 

to be studied. 

Kinetics' of Enzyme Inhibition 

Ko .... 
En-OH + ~P(X)-Y"" [EnOH 'R2P(X)-Y] En-O-P(X)R2 + y­

k· ! 
L.....------...,;,..I__J 

Kn:	 dissociation constant (how much do the enzyme and inhibitor 
like each other) 

kp:	 phosphorylation constant (how quickly does phosphorylation 
occur after enzyme/inhibitor complex forms) 

ki:	 bimolecular inhibition constant (potency of the inhibitor) 

8
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Synthetic Schemes 

A synthetic scheme of the target compound would have to involve 

several things: the chirality ofthe pentavalent phosphorous, the groups 

attached to the nitrogen, and how the OP compound binds to the enzyme so 

that the phospho-enzyme can form. To ensure chirality at the beta carbon and 

constraint of conformation at the nitrogen, the chosen starting product is 1­

proline. Initial steps involve protecting the nitrogen, and then converting 

the carboxylk: group to an alcohol At this point, there were two possible 

approaches in the second stage of the synthesis which involve the attachment 

of the phosphorous moiety. 

One was in connection with the automated synthesis of 

oligonucleoti~es8. This scheme started out with methoxydichlorophosphine, 

and used methoxybis(diisopropyJamino)phosphirte as an intermediate to get 

the desired product. The dialkyamino groups would be replaced by 

deprotonated alcohols in the presence of a strong base, and oxidation, and 

treatment with methyl Grignard would follow. 

Did not work 
due to 
solubility 
problems 

9
 
DIA =diisopropylamine
 
BzOH =benzyl alcohol
 



The other approach was to start out with the pentavalent phosphorous 

in the form of thiophosphoryltrichloride. Direct addition of alkoxides would 

result in their being substituted in the place of the chlorines, so the CBZ-I­

prolinol would have to be converted to the alkoxide. Again, methyl 

Grignard would have to be added to aIkylate the phosphorous. 

tOttCtN.­

S 
I,.CI 

CI/P'.OCH3 
III 

C8l·Cl
~OH --.	 ~OH t:;)-OH _N8~-t...... t:;)-O"Na+ 

CBZ 0H 0	 CBZ caz..	 .. 

". 

1 0
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Once the protected methoxymethylthiophosphoryl-I-prolinoxide has been 

synthesized,the protecting group is then taken off, and various alkyl groups 

or hydrogen can be placed on the nitrogen. 

1 1
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Results and Discussion 

The goal of this research was to synthesize a reversible anti-cholinesterase 

agent. The implications of this effort lie in studying the stereospecificity of the 

enzyme, and the possible pharmaceutical benefits from the completion of this quest. 

So far, the synthesis is not complete, so at best we can only comment on the 

presence of what we have so far and why we think we have the desired product. 

Transformation of I-proline 

. 
The synthesis started out with the protection of the amino acid at the 

nitrogen. Benzyloxycarbonyl was used as a protecting group was very appropriate, 

since it forms a carbamate with the nitrogen and the big group sterically prevents 

reaction at that site until it is removed by hydrogenolysis. This reaction was special 

in that there were two phases, and the reaction actually occurred at the boundries 

between the aqueous and the organic layers. There were problems in obtaining 

crystals and finally the use of seed crystals obtained from previous work were used 

to promote recrystallization. Interestingly, in other batches the problem was not 

evident and pure solid crystals were available for use, so it was probably a matter of 

improved lab technique. 

The next step was the conversion of the carboxylic acid to the alcohol. The 

mechanism of this reaction is thought to involve a boroester. The use of the 

borane adduct was especially appropriate, since it is known that it is capable of 

reducing carboxylic acids to the corresponding alcohols in the presence of other 

functional groups such as the carbamate9. The next step was the addition of the 

phosphoryl group to the alcohol. 

The scheme that didn't seem to work 

12 
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The synthesis had many detours along the way in the effort to attach the 

phosphoryl group to the l-prolinol. First, a procedure was tried which was similar to 

that involving the synthesis of oligonucleotides8. It required a dialkylamino 

intermediate. Using methyldichlorophosphine as the starting product, it was 

thought that substitution with two alkoxy groups followed by the addition of a 

Grignard reagent and oxidation would give the desired product. But there were 

difficulties in separating the product after the first substitution resulting in the 

bis(dialkylamine) product due to solubility problems. Both the Hunigs base and the 

product after treating with diisopropylamine, the nucleophile, were soluble in 

methylene chloride, but not in ether. Exposure to water was thought to decompose 

the product, since the literature8 called for the procedure to be conducted in an inert 

atmosphere. So, we tried to use the second reaction and the results were better. 

This procedure worked, as it verified by examining the NMR spectrum, and those of 

the reactants. So, instead of wasting precious l-prolinol, we attempted to do a model 

study using benzyl alcohol. It would be a similar sort of nucleophile and it would 

displace one of the diisopropylamines. NMR spectra showed some disparities as to 

whether or not the reaction actually proceeded. 

The scheme that seemed to work 

At this time we encountered an articlelO which described the nucleophilic 

displacement upon the thiophosphoryl rather than the trivalent phosphine. The 

procedure didn't involve using any amines which would pose problems in isolating 

the product, but called for the use of the alkoxide. So, starting with 

thiophosphoryltrichloride, we performed the substitution with sodium methoxide, 

making sure that the addition of methoxide was very slow, so as to produce only 

mono-substituted product. Nevertheless, some dimethoxylted product did form. 

13 
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This substitution is somewhat analogous to the reaction of a carboxyllic acid 

to form acid derivatives and vice versa where the oxygen becomes negatively 

charged and then donates the extra electrons to the carbon to from the product. In 

this case, with the phosphorous however, there is a 5-coordinated transition state. 

In order to understand the mechanism of the reaction, it is necessary to invoke 

some aspects of molecular orbital theory and the structure of phophorous. 

The displacement of the chlorine by the methoxy is thought to proceed with 

an inversion of configuration. This is based on some investigation on the 

displacement reaction of tetrahedral optically active phosphorous compounds. 

They suggest that there exists a bipyramidal structure with weak axial bonds with p­
" 

d bonding and the radial bonds in an sp2-hybridized state. This transition state, as 

the positive charge on the phophorous increases, changes into another transiton 

state in which 2 d-orbitals are excited and the equatorial bonds become stronger 

than the radial bonds, so diplacement of groups on the basal plane are preferred in a 

substitution reaction. The assumption made is that the increase in charge reduced, 

the energy gap between the d-orbital and the low-lying s-orbital. Hence, the 

substitution, should theoretically proceed with complete inversion of configuration, 

for thiophosphates and phosphoryl compounds, as well as phosphonium saltsll. 

Once the substitution was made, there were two possibilities, the attachment 

of a methyl group, or of the l-prolinoxy group. A methyl group on the 

phosphorous was desired because although many potent AChE inhibitors contained 

thio-alkyl groups as well as alkoxy groups around the phosphorous, and adding a 

methyl group resembled ACh even more. The choice of procedure was obvious. 

Using an organometallic compound, methylmagnesium bromide, the alkyl group 

acts as a nucleophile, and magnesium chloride salt is precipitated out. As of yet, no 

14
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analysis of the product has been performed. Although it has been reported that the 

alkyl group will replace the alkoxide, the presence of the CI, an even weaker base 

than OMe, indicates that mono-substitution will occur if the Grignard reagent is 

added slowly enough. 

The attachment of the l-prolinoxide to the phosphoryl group has been 

accomplished, and that is evident by NMR. By comparing the spectra of l-prolinol 

and methoxythiophosphoryldichloride, we see that there are many similarities 

which indicate that t~ere may be reactants present, but TLC analysis revealed that 

there were two spots different from those of the reactants. The aromatic ring shows 

a singlet at 7.3 ppm. There is a singlet at 5.1pm which accounts for the presence of 

the alcohol, but the relative intensity is less that it was in the spectrum of just the 

CBZ-prolinol. The peak resulting from the hydrogen attached to the oxygen in 

methanol at 2.3ppm for compound {2}'s spectra is no longer present in the one for 

the product. The pair of doublets between 3.5 and 4 ppm are still present and are a 

reminder of the presence of the dimethoxylated product. It is of interest to note the, 

coupling pattern around 2ppm. The presence of the five member ring is still there, 

but the intensities of the peaks in the octet seem to be very similar. They range 

from 17.6 to 20.2 and that is not expected for the protons on the different positions 

on the I-proline ring. 

It is expected that the sample is not very pure. It was obtained after 

combining all the eleunts off a flash column, since no individual eluent had 

anything detectable when spotted on a TLC plate and examined under UV light. In 

this mixture, we expect that there exist 2 diastereomers of {4} because there is 

chirality at the phosphorous and the chirality at the beta carbon is chosen to have 

only one form. Also there are present some reactants, either as a result of 

15 
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decomposition, or due incomplete reaction. At first, a 1:1 mixture of ethyl acetate to 

hexane was used, and the product eluted was detectable by the UV lamp. But it 

would be prudent to say that was probably some decomposition product, since its 

NMR spectrum showed no indications of the presence of I-proline. That product 

was 30mg. The other 80mg of impure product had a spectrum that indicated the 

presence of some of the desired product. No further analysis is practically feasible for 

it since purification would be required and there is not enough compound for a 

feasible purification. Compound {4} has not been analyzed, because it needs the 

addition of the l-prolinoxide. 

16
 



Conclusion 

A penultimate precursor to an AChE inhibitor has been synthesized based on 

the transition state analog of the tetrahedral intermediate structure of ACh when 

bound to the enzyme. There are only two steps remaining in the completion of the 

synthesis of the target compound. Removal of the protecting group, and addition of 

alkyl groups to the nitrogen. After that, further purification and identification of 

isomers is necessary in order to study the kinetics of inhibition. The kinetics study 

would involve purifisation of the enzyme and the use of thiocholine, a substrate 

detectable by UV-Vis spectrophotometry. 

1 7
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Experimental 

General: Proton NMR were taken on a high field 300MHz NMR spectrometer 

courtesy of lSD, and a 60 MHz Varian EM360L spectrometer. The solvents used 

were deuterated chloroform and trimethylsilane. Analytical thin layer 

chromatography was conducted with aluminum plates backing 0.25mm silica. 

Visualizations were performed under an ultraviolet lamp. Air sensitive techniques 

were conducted under a nitrogen atmosphere. 

Preparation of CBZ-I-proline{a}: To a suspension of B.77g sodium bicarbonate in 

50ml water, 5.02g 'Of I-proline (Aldrich 99+%) were added. Over a period of .5 hrs, a 

solution of 2Bg of benzyloxycarbonylchlorid~(Aldrich)in ether was added to the 

solution, while maintaining a basic environment (monitored wit pH paper with the 

dropwise addition of 3M NaOH. After letting stir for 1 hr, the aqueous layer was 

carefully neutralized with the dropwise addition of 6M HCl. Extractions were 

performed 3 times with 50 ml portions of ethyl acetate. The organic layer was dried 

with sodium sulfate and the solvent was evaporated resulting in a 2.45g yield after 

recrystallization from ether and purification via column chromatography using 

ethyl acetate. Further trials had improved yields upto 55% of the white crystals. 

Progress of the reaction was monitored by TLC. An NMR spectrum of the product 

was taken. ppm 7.4 (5H); 5.1-5.3 (3H); 4.1 (2H); 3.4-3.7 (4H); 2.1(lH) 

Preparation of CBZ-prolinol{b}: In 20ml of THF, freshly distilled, l.Og of CBZ-I­

proline was added and stirred. To that, a solution of 5.5 ml of BH3-THF (Aldrich) 

was slowly added dropwise under a nitrogen atmosphere. The mixture was 

allowed to reach room temperature overnight while stirring. After 2 extractions 

with ether, drying, and removal of solvent, a 74% recovery was observed when the 

1 8
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product was purified by column chromatography. Presence of product was verified 

by NMR. ppm 7.4 (5H); 5.2(3H); 4.0 (2H); 3.7 (lH); 3.6-3.4(3H); 1.9(4H); 1.2(2H) 

Attempted preparation of methylbis(diisopropylamino)phosphine: Via syringe, 

O.64ml of diisopropylamine (Aldrich 99%) was added to a 0.97 ml of peptide 

synthesis grade Hunigs base andO.20ml of methyldichlorophosphine (Alpha 98%) 

in 5ml of methylene chloride. After white solid appeared, it was filtered out after 

stirring overnight. No appreciable yield was present after removal of solvent. 

Preparation of methoxybis(diisopropylamino)phosphine{2}: In 10mI anhydrous 

ether, .7ml of methoxydichlorophosphine (Aldrich 98%) was dissolved and to it, 

7.25ml of diisopropylamine was added at -IOC. 0.746g were recovered after filtration 

to remove the amine salt and evaporation of solvent using a Rotovap, a yield of 

47%. Presenceof product was verified by NMR. 

Preparation of benzoxymethoxydiisopropylaminophosphine: In 4ml 

dichloromethane 0.208g of {2} were dissolved. To it .06ml of benzylalcohol was 

added and the solution was stirred for 1.5 hrs. Following usual workup, a NMR 

spectrum was taken. Purification was done via thin layer planar chromatography 

on a glass plate, using ethyl acetate and hexane, 3:1 as solvent. 

Preparation of methoxythiophosphoryldichloride{2}: To l6.55g of 

thiophosphoryltrichloride (TPTC) (Aldrich 98%) dissolved in 45 ml of toluene, 10.8g 

of sodium methoxide in l20mI methanol were added slowly over a period of 3 hrs. 

using an addition funnel. After two extractions with benzene, washing with water, 

another extraction in benzene, and removal of solvent, there was an observed yield 

of l7.3g. NMR spectrum was taken. ppm 4.0(lH); 3.9(lH); 3.7(lH); 3.6(lH) 
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Preparation of methylmethoxythiophosphorylchloride{4}: 2.11 g of {2} were 

dissolved in 2Sml toluene. 4ml of 3.0M methyl Grignard in ether was added over 

.5hrs at Oc. After washing with water and benzene, 3 extractions and removal of 

solvent, 1.8g recovered. 

Preparation of methylprolinoxythiophosphorylchloride{S}: Sodium prolinoxide 

was prepared in situ by adding .OS g of Na metal to .52g of {h} in hexane. This was 

added slowly via syringe in an inert atmosphere to .42g of {2} dissolved in toluene. 

After letting the reactjon run overnight, TLC was taken to detect progress of the 

reaction. Rf values were .7 and .5, and comparison with starting products revealed 

that they were probably isomers. Attempt t9 separate by flash chromatography 

(using ethyl acetate and hexane, 1:1, at first, and then ethyl acetate alone) failed, an 

NMR specrtum was taken. ppm 7.4 (SH); S.2(4H); 4.5(2H); 3.6, 3.7(1H); 1.8-2.2(7H), 

1.3(1H). 
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Appendix 
C NMR of CBZ-I-proline 1
 
H NMR of CBZ-I-proline 2
 
H NMR of CBZ-I-prolinol 3
 
H NMR of MeOPrOSPCI 4
 
H NMR of MeOSPCb 5
 
H NMR of MeOPrOSPCI 6
 
HNMR of MeOPbis(DIA) 7
 
H NMR of MeOPbis(DIA) 8
 
H NMR of MeOPOBzDIA 9
 
Refference NMR from Aldrich catalog of NMR spectra 10-12. 
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