A Quantitative Analysis of the Relationship Between Response Rate and Reinforcement Rate

J. Alfred Kuh
Illinois Wesleyan University

James Dougan, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Kuh, J. Alfred and Dougan, Faculty Advisor, James, "A Quantitative Analysis of the Relationship Between Response Rate and Reinforcement Rate" (1991). John Wesley Powell Student Research Conference. 27.
https://digitalcommons.iwu.edu/jwprc/1991/posters/27

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
A QUANTITATIVE ANALYSIS OF THE RELATIONSHIP BETWEEN RESPONSE RATE AND REINFORCEMENT RATE

J. Alfred Kuh, Department of Psychology, IWU, James Dougan*

Traditional reinforcement theories have predicted a positive monotonic relationship between response rate and reinforcement rate. That is, response rates should rise as a function of increased reinforcement rate. More recently, several theories based on economic and regulatory models have predicted bitonic functions. That is, response rates should first rise, and then fall, as a function of increased reinforcement rates. Several studies have found the predicted bitonic relationship. Unfortunately, many of these studies purporting to demonstrate bitonicity can be criticized because of various confounding variables. For example, in studies which vary reinforcement rate, a decreased rate of response at high reinforcement rates may be an artifact of satiation or of a shorter time available to respond. The present study attempts to replicate and extend the earlier studies by demonstrating bitonicity while controlling for confounding variables, in particular for satiation effects. Subjects were 10 rats: Each was exposed to a Variable Interval (VI) 15s and a VI30s schedule. Half of the subjects ran a 10-minute session, and half responded on a 30-minute session. We expect an inverse relationship between response rate and reinforcement rate in the 30-minute sessions, but a direct relationship during the 10-minute sessions.