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Abstract 

 The Brown-headed Cowbird (Molothrus ater) is a generalist brood parasite that lays eggs in the nests of 

many host species, including the Dickcissel (Spiza americana) and two non-parasitic relatives: the Red-winged 

Blackbird (Agelaius phoeniceus) and the Common Grackle (Quiscalus quiscula).  Cowbird eggs reportedly 

hatch sooner than equivalently-sized host eggs, presumably via accelerated embryonic development enabled by 

a greater eggshell porosity and consequently greater gas exchange.  However, the distribution of pores among 

apical, equatorial and basal eggshell regions within cowbirds and host species is undetermined.  I tested the 

hypothesis that equatorial porosity would be greatest because respiratory gases primarily cross the eggshell 

pores and enter or exit the embryo’s circulatory system via the chorioallantoic membrane located in that region.  

I found that the equatorial region of eggs within species had significantly greater pore density, pore area, and 

porosity than the basal or apical regions of eggshells from cowbirds (P ≤ 0.006), Red-winged Blackbirds (P ≤ 

0.002), and Dickcissels (P ≤ 0.005).  Grackle eggshells did not follow this regional pattern, and porosity 

characteristics did not differ significantly between the equator and base (P > 0.05).  Notably, cowbird eggshells 

had significantly greater pore area and porosity in equatorial regions compared to its three hosts (P ≤ 0.012).  

Cowbird eggshells had a greater apical pore area than that of the Dickcissel (P < 0.001) and grackle (P = 0.003), 

and did not have significantly greater eggshell basal pore area or porosity compared to either of its relatives.  

These observations demonstrate region-specific rather than global increases in eggshell porosity, which may 

further explain the accelerated embryonic development of cowbirds compared to host species. 

 

Introduction 

 The Brown-headed Cowbird (Molothrus ater, hereafter cowbird) is a generalist brood parasitic species 

(Passeriformes: Icteridae) which utilizes a variety of bird species as hosts to raise its young.  Cowbird eggs 

hatch earlier than expected based on their egg size (Briskie and Sealy 1990, Peer and Bollinger 2000) and 

cowbirds have also been reported to hatch earlier than host species (Briskie and Sealy 1990, McMaster and 
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Sealy 1997).  Asynchronous hatching between host and parasite benefits the parasitic cowbird nestling by 

allowing it to outcompete host nestlings for resources, thus leading to decreased reproductive success of the 

host (Payne 1977, Hauber 2003).  We discovered in a previous study that hatching asynchrony may be due to an 

accelerated rate of embryonic development that is, in part, explained by increased porosity (i.e., pore area 

divided by eggshell thickness) in the cowbird eggshell (Jaeckle et al. In Review).  Egg incubation periods are 

inversely proportional to the gas conductance across an eggshell (Rahn and Ar 1974), which, in turn, is 

influenced by the level of eggshell porosity (Paganelli 1980, Ar and Rahn 1985, Booth and Seymour 1987, 

Booth 1989, Stein and Badyaev 2011).  Ar et al. (1974) defined gas conductance as the total egg porosity 

multiplied by the constant 23.41.  Embryos from eggshells with high porosity are able to maintain higher rates 

of metabolism (Burton and Tullett 1983) due to greater exchange of metabolic gases than eggs with lower 

porosity (Rahn et al. 1974, Ar and Rahn 1978, Paganelli 1980, Vleck and Bucher 1998).  Cowbird eggs 

exhibited greater overall eggshell porosity and estimated gas conductance through eggshell pores than that of 

two similarly-sized hosts: the Dickcissel (Spiza americana) and the Red-winged Blackbird (Agelaius 

phoeniceus), a non-parasitic icterid (Jaeckle et al. In Review).  Therefore, differences in porosity, and thus 

development rate, may be the mechanism by which cowbirds hatch earlier than their hosts (Jaeckle et al. In 

Review). 

 While the eggshell porosity of cowbirds is known to be greater than that of these hosts, the distribution 

of porosity across different regions of the eggshell has not been previously determined.  Rokitka and Rahn 

(1987) found increased eggshell porosity in the basal region compared to the equator and apex in avian species 

from the taxonomic orders Galliformes (e.g. chickens and turkeys), Anseriformes (e.g. ducks and geese), 

Charadriiformes (e.g. terns), and Ciconiiformes (e.g. egrets).  The base of avian eggs contains the air-cell, an air 

space between the inner and outer eggshell membranes, which expands as water is lost from the egg and serves 

as the site for embryonic gas exchange (Wangensteen 1972, Rahn and Ar 1974, Ackerman and Rahn 1981, 

Rokitka and Rahn 1987, Rahn and Paganelli 1990, Mao et al. 2007).  The air-cell is most important during the 

later stages of development primarily directly before hatching during internal pipping, the process in which the 
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chick punctures the air-cell and pulmonary respiration begins (Mao et al. 2007).  Mao et al. (2007) suggested 

that porosity in the basal region is important for the hatchability of an egg.  However, during the majority of 

embryonic development, gas exchange essential to growth and survival of the embryo occurs primarily via the 

chorioallantoic membrane, which is a specialized vascular membrane (Patten 1951, Wangensteen 1972, 

Ackerman and Rahn 1981, Rokitka and Rahn 1987).  During development, the chorioallantoic membrane grows 

primarily in the equatorial and apical regions of the egg, although it eventually expands to cover nearly the 

entire inner surface of the eggshell (Patten 1951, Paganelli 1980, Tazawa 1980; See Appendix I).   

 In this study, I tested the hypothesis that the degree of eggshell porosity is directly related to egg region 

due to the location of the chorioallantoic membrane.  I predicted that eggshell porosity would be greatest in the 

equatorial and apical regions of the egg.  To test this hypothesis, I compared eggshell porosity in the apical, 

equatorial, and basal regions of eggshells within and among the eggs of the cowbird and three of its potential 

host species: the Red-winged Blackbird, the Common Grackle (Quiscalus quiscula, hereafter grackle), and the 

Dickcissel.  Two of the host species studied, the Red-winged Blackbird and the grackle, are non-parasitic 

relatives of the cowbird.  Comparisons among these three icterid species may give insights about whether 

observed differences among species represent global or region-specific eggshell characters that evolved as an 

adaptation for the cowbird’s unique parasitic reproductive strategy.  If cowbird eggs have greater porosity in the 

equator and apex than these hosts, it would further explain the accelerated embryonic development observed in 

the cowbird. 

 

Materials and Methods 

Eggs of Brown-headed Cowbirds, Dickcissels, Red-winged Blackbirds, and grackles (N = 20 eggs per 

species) in different stages of development were collected from nests in McDonough County, Illinois, Riley 

County, Kansas, and Scott County, Iowa between 2006 and 2009.  The eggs were stored at -20 

C in a 

laboratory freezer.  After removal from the freezer, the length and width of each egg were measured using a 
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Vernier digital caliper (Neiko, +/- 0.02 mm) before preparation of the eggshells for analysis of porosity.  We 

utilized eggs with no visible cracks or only thin fractures and avoided eggshells that were visibly damaged 

during freezing.  All egg dimensions were within published ranges for all four species (Yasukawa and Searcy 

1995, Peer and Bollinger 1997, Lowther 1993, Temple 2002).  

Preparation of Eggshell Fragments 

 Measurements of eggshell fragments from cowbirds, Dickcissels, and Red-winged Blackbirds were 

made by one observer (Miranda Kiefer, MK).  I (BC) completed all of the measurements of pore count and pore 

area for each eggshell fragment from grackles.  I checked the precision of pore counts by MK by independently 

examining the same eggshell fragments and found no difference between the number of pores observed by both 

individuals (one-way ANOVA F1,106 = 0.00, P = 1.00, n = 108 measurements). 

Eggshells were thawed for 1 min and broken into fragments using a scalpel.  Fragments were then 

placed into boiling 5% NaOH for approximately 15 min to remove the inner eggshell membrane and outer 

cuticle.  The pieces of eggshell were air-dried for 1-14 days before analysis.  The eggshell fragments were 

broken into smaller pieces during the boiling process as well as manually broken to facilitate viewing with a 

compound microscope.  We examined the outer surface of eggshell fragments (n= 18 fragments each for 

equatorial, basal, and apical regions of the eggshell; each fragment was 3.07 mm
2
 in size) at a 400x 

magnification to count the number of pores and measure pore diameters.  A calibrated ocular micrometer ( 2.5 

µm) was used to measure pore diameters. Observations of pore shape during analysis indicated that pores were 

mostly circular in shape.  Therefore, for purposes of this analysis each eggshell pore was assumed to be circular 

in shape with a surface area (SA) calculated as SA (μm
2
) = (diameter/2)

2
.    Although the eggs for all species 

collected were in various stages of embryonic development, a factor that could influence the eggshell thickness 

or pore diameter on the inner eggshell surface (Booth and Seymour 1987), this would have no effect on the 

pores we analyzed on the outer surface of the eggshell.  We also measured eggshell thickness (n = 3 
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independent measures each for equatorial, basal, and apical regions of eggshell,  0.01 mm) using a Starrett 

model 2600-1 thickness indicator after the inner eggshell membrane and outer cuticle were removed. 

 

Statistical Analyses 

 All statistical comparisons were performed using SPSS (version 20.0; IBM Corporation, Somers, New 

York).  Nonparametric tests were utilized for all comparisons as data did not fit the assumptions of parametric 

tests.  Multiple transformations were attempted but homogeneous variances (tested via the Levene Test for 

equality of variance) were not achieved.  We used Kruskal-Wallis tests to reveal if differences existed among 

groups.  If a significant difference was detected, Mann-Whitney U tests were performed to compare specific 

sample pairs to determine where the differences occurred.  A Bonferroni correction (alpha = 0.05 ÷ N 

comparisons) was used to determine significance for individual Mann-Whitney comparisons.  To normalize the 

data to egg size, we used published average egg masses for each species (cowbird [Rahn et al. 1988]; Dickcissel 

[Gross 1968]; Red-winged Blackbird [Manning 1981]; and grackle [Howe 1976]) as fresh weight was not taken 

during collection. 

Comparisons of whole eggshells 

 To test for differences among species, mean values for the focal eggshell characteristics (i.e., pore 

number, pore area, and porosity) were used for each egg.  I was able to calculate the total pore number, pore 

area, and porosity per egg based on estimated average values of pore number per mm
2
 and pore area (μm

2
) per 

mm
2
 collected for each species in conjunction with calculated surface area (mm

2
) values.  I estimated egg 

surface area as egg volume
0.666

 × 4.951, where egg volume = egg length × egg width
2
 × 0.51 (Hoyt 1976). 
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Comparisons of egg regions 

 I tested differences among species for average pore number per mm
2
, average pore area per mm

2
, and 

average porosity per mm
2
 of eggshell regions (i.e., base, apex, or equator).  The measured eggshell 

characteristics were also compared among eggshell regions within each species. 

 

Results 

Interregional, Intraegg Comparisons 

 The majority of samples from all four species showed no significant differences among regions (i.e., 

apical, equator, base), and any differences that were observed were inconsistent among eggs (results not 

shown). 

Interregional, Intraspecies Comparisons 

 Within species, there were significant differences in all studied eggshell characteristics among eggshell 

regions (Table 1).  Post-hoc analyses revealed that equatorial regions of cowbird, Red-winged Blackbird, and 

Dickcissel eggshells had significantly greater eggshell pore densities, pore areas, and porosities than either the 

basal or apical regions (Table 2).  In these three species, the base and apex eggshell pore density, pore area, and 

porosity did not differ significantly (Table 2).  However, regional comparisons in the grackle eggshells revealed 

that the equatorial porosity was significantly greater than that of the apex and did not differ significantly from 

that of the base (Table 2).  The basal region of grackle eggshells also had significantly greater pore density, pore 

area, and porosity than the apical region (Table 2).  For the results of the individual Mann-Whitney analyses, 

see Appendix II. 

Interspecies, Intraregional Comparisons 

 When each region was compared among species, there were significant differences in pore density, pore 

area, and porosity (Table 3). Comparisons of pore density among basal and equatorial eggshell regions revealed 
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that cowbird eggshells were not significantly different from the eggshells of Dickcissels (P ≥ 0.029), but were 

significantly less than those of Red-winged Blackbirds (P ≤ 0.009; Table 4, Fig. 1A).  Cowbird eggshells had a 

significantly greater equatorial pore density than that of the grackle (P < 0.001), but had significantly less 

porosity than the grackle in the basal region (P = 0.008; Table 4, Fig. 1A).  The cowbird eggshells had 

significantly greater apical pore density than that of the Dickcissel (P = 0.005) and grackle (P = 0.002); however 

cowbird eggshell pore density in the apex did not differ significantly from that of the Red-winged Blackbird (P 

= 0.059; Table 4).   

Post-hoc analyses revealed that cowbird eggshells had significantly greater pore area (P ≤ 0.003) and 

porosity (P ≤ 0.012) in the equator than the three host species (Fig. 1B-C).  Similarly, the pore area of apical 

regions in cowbird eggs was greater than that of Dickcissels (P < 0.001) and grackles (P = 0.003), although 

cowbird apical eggshell pore area did not differ significantly from the eggshells of Red-winged Blackbirds (P = 

0.154; Table 4).  The porosity of apical eggshells from cowbirds was significantly greater than that of 

Dickcissels and grackles (P ≤ 0.001); however, there was no significant difference between the apical porosity 

of cowbird and Red-Winged Blackbird eggshells (P = 0.293; Table 4).  The pore area of the basal eggshell 

region in cowbird eggs was significantly greater than only the Dickcissel (P = 0.007; Table 4).  Cowbird basal 

eggshell pore area was significantly less than that of grackles (P = 0.001) and did not differ significantly from 

eggshells of Red-winged Blackbirds (P = 0.439; Table 4).  Similarly, there was no significant difference 

between basal eggshell porosity of cowbirds and Red-winged Blackbirds (P = 0.227) or Dickcissels  

(P = 0.024), and cowbird eggshells had significantly less basal porosity than grackles (P = 0.003; Table 4).  For 

further comparisons among host species see Table 4 and Figure 1.    

Whole Egg Comparisons among Species 

 Results from eggshell comparisons (i.e. pore density, pore area, and porosity) among whole eggs of the 

cowbird, Red-winged Blackbird, and Dickcissel were consistent with conclusions from Jaeckle et al. (In 

Review).  All characteristics analyzed per egg were first normalized by egg mass.  There was a significant 
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difference among species in average pore density per mm
2
 (χ

2
 = 15.54, df = 3, P = 0.001). Likewise, there was a 

significant difference among species in average pore density per egg (χ
2
 = 18.24, df = 3, P < 0.001).  There were 

no significant differences between the cowbird and its three hosts in average pore density per mm
2
 (P ≥ 0.014; 

Table 5) or per egg (P ≥ 0.097; Fig. 2A).  However, the pore density per mm
2
 and per egg of Red-winged 

Blackbird eggshells was significantly greater than that of the Dickcissel (P ≤ 0.005) and the grackle (P ≤ 0.001; 

Table 5, Fig. 2A).  There was no significant difference in average pore density per mm
2
 between Dickcissel and 

grackle eggs (P = 0.904; Table 5), nor were there differences in average pore density per egg between 

Dickcissel and grackle eggs (P = 0.947; Fig. 2A).   

 There was a significant difference among species in pore area per mm
2
 (χ

2
 = 32.49, df = 3, P < 0.001; 

Table 5) and per egg (χ
2
 = 29.57, df = 3, P < 0.001; Fig. 2B).  Post-hoc analyses revealed eggshell pore area per 

mm
2
 and per egg did not differ significantly between Dickcissels and Red-winged Blackbirds (P ≥ 0.020); 

however eggshells of both species had significantly less pore area per mm
2
 and per egg than cowbirds (P ≤ 

0.001; Table 5, Fig. 2B).  Grackle eggshell pore area per mm
2
 was also greater than that of the Red-winged 

Blackbird (P < 0.001; Table 5), as was the pore area per egg (P = 0.001; Fig. 2B).  Grackle eggs also had greater 

pore area than the Dickcissel, both per mm
2
 (P < 0.001; Table 5) and per egg (P <0.001; Fig. 2B).    

 There was a significant difference among species in average porosity per mm
2
 (χ

2
 = 20.70, df = 3, P < 

0.001) and per egg (χ
2
 = 18.570, df = 3, P < 0.001), which revealed results similar to comparisons of pore area.  

Eggshell porosity of grackles did not differ significantly from cowbirds in comparisons per mm
2
 (P = 0.769; 

Table 5) or per egg (P = 0.129; Fig. 2C).  Both the cowbird and the grackle had significantly greater eggshell 

porosity per mm
2
 than the eggshells of the Red-winged Blackbird (P ≤ 0.003) and Dickcissel (P ≤ 0.003; Table 

5).  Similarly, cowbird eggshells had significantly greater porosity per egg than Red-winged Blackbirds (P = 

0.004) and Dickcissels (P <0.001); however, grackle eggs had significantly greater porosity per egg than those 

of Dickcissels (P = 0.003) but not Red-winged Blackbirds (P = 0.060; Fig. 2C).  There was no significant 
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difference in porosity per mm
2
 or per egg between the Red-winged Blackbird and the Dickcissel (P ≥ 0.072; 

Table 5, Fig. 2C). 

 

Discussion 

 Cowbird, Red-winged Blackbird, and Dickcissel eggs all showed greater levels of pore density, pore 

area, and porosity in equatorial eggshell regions compared to basal or equatorial regions.  Although these results 

agree with the predictions of this study, they are in conflict with the findings of Rokitka and Rahn (1987).  

Rokitka and Rahn (1987) found the basal eggshell region was most porous and described a steady decrease in 

porosity from the base to the apex of the egg.  This discrepancy in regional porosity characterization may be due 

to differences in chick development among species in the two studies.  For example, some of the species studied 

by Rokitka and Rahn (1987) produced precocial nestlings (i.e., the young are mature and mobile at hatching) 

while those utilized in this study produce altricial nestlings (i.e., the young are helpless at hatching).  The basal 

region of eggs contains the air-cell, a structure essential to internal pipping and therefore chick hatchability 

(Mao et al. 2007).  This later phase of development when pulmonary respiration is initiated may be especially 

important for the success of precocial or semi-precocial nestlings directly before hatching as they may require a 

higher level of basal eggshell porosity compared to altricial or semi-altricial species.  However, we found that 

the eggshell porosity of grackles, a species with altricial young, did not differ significantly between the 

equatorial and basal eggshell regions.  Regional porosity comparisons between the eggs of precocial and 

altricial nestlings are required to adequately test this nestling maturation-specific porosity distribution 

hypothesis.   

 The greater equatorial eggshell porosity (i.e. pore area per thickness) compared to basal or apical egg 

regions observed in cowbirds, Red-winged Blackbirds, and Dickcissels correlates to the location of the 

chorioallantoic membrane, a vascularized structure which is the primary site of embryonic gas exchange during 

development (e.g., Patten 1951, Wangensteen 1972).  Ackerman and Rahn (1981) found that during the 
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majority of embryonic development, metabolic gas flux is confined to areas of the eggshell which cover the 

chorioallantoic membrane.  Although over time this structure expands to cover the entire inner eggshell surface 

(Paganelli 1980, Tazawa 1980), it is principally situated in the equatorial region of the egg.  Since porosity is 

proportional to permitted gas flux (e.g., Ar et al. 1974), it is logical that eggshell regions significant for 

respiration would also have increased porosity.  A study of turkey regional eggshell porosity by  

Christensen (1983) revealed that successfully hatched eggs of that precocial species had significantly greater 

porosity in equatorial and basal eggshell regions than that of non-hatching eggs.  These results support my 

explanatory hypothesis concerning the porosity distribution of eggshell porosity among different regions of the 

avian eggshell. 

 It is noteworthy that cowbirds had greater porosity (through an increased pore area) than the three 

studied host species in the equatorial region when taking into consideration the relationship between equatorial 

porosity and nestling development and hatchability.  This region-specific increase would allow for greater rates 

of gas exchange in the specific location of the chorioallantoic membrane (Patten 1951).  The cowbird also had 

significantly greater apical eggshell porosity than the Dickcissel and Grackle.  This finding, too, supports the 

premise that the distribution of porosity in cowbird eggshells is correlated with the location of the 

chorioallantoic membrane.  Furthermore, cowbird eggshell porosity in the base, a region where the 

chorioallantoic membrane is absent, was not greater than any of its host species. The greater porosity of 

cowbird eggshells than those of its hosts only in regions associated with the primary exchange membrane for 

allantoic respiration could be a factor which permits the apparent accelerated rate of development of the brood 

parasite compared to its hosts (Briskie and Sealy 1990, McMaster and Sealy 1997). 

 Comparisons between the cowbird and two of its non-parasitic relatives, the Red-winged Blackbird and 

the grackle, revealed that these observed differences in total porosity distribution among regions may be unique 

adaptations for the cowbird’s brood parasitic reproductive strategy.  Although the overall weight-specific 

porosity per egg did not differ significantly between cowbird and grackle eggshells, the cowbird had greater 
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regional porosity than the grackle in the equatorial and apical regions.  Further, cowbird eggshells only had 

significantly greater porosity in the equatorial region when compared to those of the Red-winged Blackbird, 

even though the total porosity per egg of the cowbird was substantially greater.  Together, these comparisons 

reveal that adaptations for region-specific rather than global increases in eggshell porosity may be more 

beneficial for the success of the cowbird as a brood parasite.  This may offer insight into the evolution of 

porosity across the avian eggshell, as porosity in the basal region would have little effect on development and, 

hence, would not have significant selection pressure to confer a fitness benefit. 

 In summary, the brood parasitic Brown-headed cowbird has an accelerated rate of embryonic 

development compared to some host species, which may be explained by region-specific increases in eggshell 

porosity.  I found through intraspecific egg comparisons among species that the equatorial region was especially 

important for gas exchange during development due to a greater proportion of total eggshell porosity located in 

this region in cowbird, Red-winged Blackbird, and Dickcissel eggs.  Additionally, cowbird eggshells had 

significantly greater porosity than all three host species in the equator of the egg, but not the base.  These data 

suggest that region-specific rather than global increases in eggshell porosity evolved in the cowbird to reduce its 

incubation period as an adaptation for brood parasitism. 
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Table 1. Comparison of pore density (per mm
2
), pore area (µm

2
 per mm

2
), and porosity (µm

2
mm

-1 
per mm

2
) 

among eggshell regions (base, apex and equator) within the cowbird and its hosts via Kruskal-Wallis tests.  

Pore Density     χ
2
   df   P-value 

 Cowbird    25.27   2   <0.001 

 Red-winged Blackbird  13.29   2     0.001 

 Grackle 15.26   2   <0.001 

 Dickcissel    15.83   2   <0.001 

Pore Area 

 Cowbird    27.68   2   <0.001 

 Red-winged Blackbird  17.40   2   <0.001 

 Grackle    22.78   2   <0.001 

 Dickcissel    13.56   2     0.001 

Porosity 

 Cowbird    28.14   2   <0.001 

 Red-winged Blackbird  16.16   2   <0.001 

 Grackle    21.98   2   <0.001 

 Dickcissel    12.59   2     0.002 
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Table 2.  Comparison of median pore density (per mm
2
), pore area (µm

2
 per mm

2
), and porosity (µm

2
mm

-1 
per 

mm
2
) among eggshell regions within species.  Superscripts of different letters indicate a statistically significant 

difference (P ≤ 0.0125). 25% and 75% refer to percentiles.  

Cowbird 

Eggshell pore density    n  Median  25%      75%  Maximum 

 Base   326    0.00
b
  0.00     0.33        1.63 

 Equato r  345    0.33
a
  0.00     0.65        2.28 

 Apex   248    0.33
b
  0.00     0.33        1.63 

Eggshell pore area   

 Base   326    0.00
b
  0.00     6.40    159.89 

 Equator  345    3.20
a
  0.00   15.99    148.70 

 Apex   248    0.30
b
  0.00     6.40    102.33 

Eggshell porosity  

 Base   326    0.00
b
  0.00   58.08             1332.45 

 Equator  345  29.07
a
  0.00            151.45             1274.58 

 Apex   248    2.55
b
  0.00   65.76    852.77 

 

Red-winged Blackbird 

Eggshell pore density    n  Median   25%     75%  Maximum 

 Base   281    0.33
b 

 0.00     0.49        1.30 

 Equator  314    0.33
a
  0.00     0.65        2.28 

 Apex   247    0.33
b
  0.00     0.65        1.63 

 

Eggshell pore area  

 Base   281    0.40
b
  0.00     2.00      41.57 

 Equator  314    0.55
a
  0.00     5.20      41.97 

 Apex   247    0.10
b
  0.00     2.00       45.17 

 

Eggshell porosity  

 Base   281    4.14
b
  0.00   29.52    445.42 

 Equator  314    6.24
a
  0.00   57.74    449.70 

 Apex   247    1.11
b
  0.00   23.32    483.96 
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(Table 2 continued) 

Grackle 

Eggshell pore density     n  Median  25%     75%  Maximum 

 Base   360    0.32
a 

 0.00     0.33        1.30 

 Equator  360    0.00
a
  0.00     0.33        1.30 

 Apex   360    0.00
b
  0.00     0.33        1.30 

Eggshell pore area  

 Base   360    0.40
a 

 0.00   14.39    129.51 

 Equator  360    0.00
a 

 0.00     6.40    118.32 

 Apex   360    0.00
b
  0.00     3.00      54.36 

Eggshell porosity  

 Base   360    3.64
a 

 0.00            119.12            1022.48 

 Equator  360    0.00
a
  0.00   57.72            1044.01 

 Apex   360    0.00
b 

 0.00   25.85    440.79 

Dickcissel 

Eggshell pore density     n  Median   25%     75%  Maximum 

 Base   349    0.00
b 

 0.00     0.33        1.95 

 Equator  359    0.33
a 

 0.00     0.33        1.63 

 Apex   289    0.00
b 

 0.00     0.33        1.63 

Eggshell pore area  

 Base   349    0.00
b 

 0.00     0.50      78.35 

 Equator  359    0.10
a
  0.00     1.60      43.57 

 Apex   289    0.00
b
  0.00     0.50      44.87 

Eggshell porosity  

 Base   349    0.00
b
  0.00     6.66    870.53 

 Equator  359    1.15
a 

 0.00              20.86    522.85 

 Apex   289    0.00
b 

 0.00     8.43    448.70 
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Table 3. Comparison of pore density (per mm
2
), pore area (µm

2
 per mm

2
), and porosity (µm

2
mm

-1 
per mm

2
) 

within eggshell regions among the cowbird and its hosts.   

Base        χ
2
   df   P-value 

 Eggshell pore density    27.72   3   <0.001 

 Eggshell pore area    43.23   3   <0.001 

 Eggshell porosity    34.24   3   <0.001 

Equator    

 Eggshell pore density    46.83   3   <0.001 

 Eggshell pore area    47.97   3   <0.001 

 Eggshell porosity    43.07   3   <0.001 

Apex    

 Eggshell pore density    33.04   3   <0.001 

 Eggshell pore area    27.55   3   <0.001 

 Eggshell porosity    25.15   3   <0.001 
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Table 4.  Comparison of pore density (per mm
2
), pore area (µm

2
 per mm

2
), and porosity (µm

2
mm

-1 
per mm

2
) in 

two eggshell regions among the cowbird and its hosts.  Superscripts of different letters indicate a statistically 

significant difference (P ≤ 0.0125).  

Base 

Eggshell pore density     n Median  25%     75%  Maximum 

Cowbird   326    0.00
b
  0.00    0.33        1.63 

 Red-winged Blackbird 281    0.33
a
  0.00    0.49        1.30 

 Grackle   360    0.32
a
  0.00    0.33        1.30 

 Dickcissel   349    0.00
b
  0.00    0.33        1.95 

Eggshell pore area  

 Cowbird   326    0.00
b
  0.00    6.40    159.89 

 Red-winged Blackbird 281    0.40
b
  0.00    2.00      41.57 

 Grackle   360    0.40
a
  0.00  14.39    129.51 

 Dickcissel   349    0.00
c
  0.00    0.50      78.35 

Eggshell porosity  

 Cowbird   326    0.00
b,c

 0.00  58.08             1332.45 

 Red-winged Blackbird 281    4.14
a,b 

0.00  29.52    445.42 

 Grackle   360    3.64
a
  0.00           119.12             1022.48 

 Dickcissel   349    0.00
c
  0.00    6.66    870.53 

 

Apex 

Eggshell pore density     n Median  25%     75%  Maximum 

 Cowbird   248    0.33
a
  0.00    0.33        1.63 

 Red-winged Blackbird 247    0.33
a
  0.00    0.65        1.63 

 Grackle   360    0.00
b
  0.00    0.33        1.30 

 Dickcissel   289    0.00
b
  0.00    0.33        1.63 

Eggshell pore area  

 Cowbird   248    0.30
a
  0.00    6.40    102.33 

 Red-winged Blackbird 247    0.10
a,b

 0.00    2.00      45.17 

 Grackle   360    0.00
b,c

 0.00    3.00      54.36 

 Dickcissel   289    0.00
c
  0.00    0.50      44.87 

Eggshell porosity  

 Cowbird   248    2.55
a
  0.00  65.76    852.77 

 Red-winged Blackbird 247    1.11
a,b

 0.00  23.32    483.96 

 Grackle   360    0.00
b,c

 0.00  25.85    440.79 

 Dickcissel   289    0.00
c
  0.00    8.43    448.70 

 

 



Childs                      21 

 

 

 

(0.65) (0.65) (0.33) (0.33) 

(1.60) (6.40) (5.20) (16.00) 



Childs                      22 

 

Figure 1:  Differences in (A) pores per mm
2
, (B) pore area (µm

2
) per mm

2
 and (C) porosity (µm

2
mm

-1
 per mm

2
 

of the equatorial eggshell region among cowbird and host eggshells.  Each box plot shows 25
th

 and 75
th

 

percentiles (box), median (line in box), and maximum (top whisker) values.  Minimum values for all species in 

all comparisons were zero.  Interquartile ranges are listed in parentheses beneath species name.  Significant 

differences (P ≤ 0.0125) are represented by different letters located above the upper whisker. 
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Table 5.  Comparison of overall pore density (per mm
2
), pore area (µm

2
 per mm

2
), and porosity (µm

2
mm

-1 
per 

mm
2
) among cowbird and host eggshells.  Superscripts of different letters indicate a statistically significant 

difference (P ≤ 0.0125).  

Eggshell pore density     n Median    25%           75% Minimum Maximum 

 Cowbird   14   0.21
b,c

   0.15          0.36      0.07       0.50  

 Red-winged Blackbird 20   0.31
a,b

   0.27          0.41      0.18       0.69 

 Grackle   20   0.20
c
    0.15          0.26      0.13       0.33 

 Dickcissel   20   0.20
c
    0.12          0.33      0.06       0.49 

Eggshell pore area  

 Cowbird   14   6.36
a
    4.07          9.68      1.66     19.72 

 Red-winged Blackbird 20   3.00
b
    1.78          4.35      0.94       4.35 

 Grackle   20   6.90
a
    4.64          9.96      1.54     15.49 

 Dickcissel   20   1.20
b
    0.75          3.89      0.11       7.98 

Eggshell porosity  

 Cowbird   14 61.49
a
  43.09        87.99    14.12   167.44 

 Red-winged Blackbird 20 33.98
b
  19.57        51.01    10.59     73.88 

 Grackle   20 58.99
a
  40.88        80.33    14.39   122.81  

 Dickcissel   20 17.38
b
  10.36        50.14      1.44   102.57 
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Figure 2.  Differences in (A) estimated pore density per g-egg, (B) estimated pore area (µm
2
) per g-egg and (C) 

estimated porosity (µm
2
mm

-1
) per g-egg among cowbird and host eggshells.  All values represent entire 

eggshell estimates which were normalized by mass.  Each box plot shows 25
th

 and 75
th

 percentiles (box), 

median (line in box), minimum (bottom whisker), and maximum (top whisker) values.  Interquartile ranges are 

listed in parentheses beneath species name.  Significant differences (P ≤ 0.0125) are represented by different 

letters located above the upper whisker. 
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Appendices 

Appendix I. The development of the chorioallantoic membrane in (C) an embryo of about 5 days incubation and 

in (D) an embryo of about 14 days incubation.  The chorioallantoic membrane (here labeled simply “allantois”) 

is produced by the embryo and develops in the equatorial egg region before expanding to cover the entire inner 

eggshell surface.  The air-cell is unlabeled but can be seen in the basal egg region as the physical space between 

the eggshell and the embryo.  Figure from Patten (1951). 
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Appendix II.  Comparison of pore density (per mm
2
), pore area (µm

2
 per mm

2
), and porosity (µm

2
mm

-1 
per 

mm
2
) among eggshell regions within the cowbird and its hosts via Mann-Whitney U tests.  

Cowbird 

Apex v. Base      U    P-value   

 Eggshell pore density         36886.50      0.046 

 Eggshell pore area         37093.00      0.087 

 Eggshell porosity         37106.00      0.088 

Apex v. Equator 

 Eggshell pore density         37499.50      0.006 

 Eggshell pore area         36572.50      0.002 

 Eggshell porosity         36438.50      0.001   

Base v. Equator 

 Eggshell pore density         44780.50    <0.001 

 Eggshell pore area         43840.00    <0.001 

 Eggshell porosity         43773.50    <0.001 

Red-winged Blackbird 

Apex v. Base      U     P-value   

 Eggshell pore density         34489.00      0.896 

 Eggshell pore area         33948.00      0.652 

 Eggshell porosity         33945.00      0.651 

Apex v. Equator 

 Eggshell pore density         33121.00      0.002 

 Eggshell pore area          31855.50               <0.001 

 Eggshell porosity         32090.00               <0.001 

Base v. Equator 

 Eggshell pore density         37978.50      0.002 

 Eggshell pore area         37321.50      0.001 

 Eggshell porosity         37576.00      0.001 
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(Appendix II continued) 

Grackle 

Apex v. Base      U     P-value   

 Eggshell pore density         55088.00    <0.001 

 Eggshell pore area         52525.00    <0.001 

 Eggshell porosity         52739.00    <0.001 

Apex v. Equator 

 Eggshell pore density         58483.00      0.011 

 Eggshell pore area         57709.00      0.005 

 Eggshell porosity         57862.50      0.006 

Base v. Equator 

 Eggshell pore density         61486.50      0.194 

 Eggshell pore area         59660.00      0.050 

 Eggshell porosity         59673.50      0.051 

Dickcissel 

Apex v. Base      U     P-value   

 Eggshell pore density         49238.00      0.552 

 Eggshell pore area         49346.50      0.592 

 Eggshell porosity         49243.00      0.557 

Apex v. Equator 

 Eggshell pore density         44260.00    <0.001 

 Eggshell pore area         44838.00      0.001 

 Eggshell porosity         45012.50      0.001 

Base v. Equator 

 Eggshell pore density         54943.50      0.002 

 Eggshell pore area         55349.00      0.003 

 Eggshell porosity         55734.00      0.005 
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