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Abstract 

Previous research in the area of expert-novice comparisons of 

mathematical problem solving has focused on the differences in 

categorization of and performance on math problems. These studies have 

led to the conclusion that while solving or categorizing problems, experts 

focus on deep processing and novices focus on surface structure. Other 

research dealing with true/false multiplication equations has shown that 

adults (considered experts in multiplication) can reject false answers 

before processing the equation. This study attempts to extend these 

findings by looking at the differences between experts and novices in the 

recognition of errors in true/false calculus verification expressions. The 

participants were professors (experts) and students (novices). The 

experiment consisted of participants answering 68 true/false calculus 

expressions (equations or conditionals) at three levels of difficulty. 

Reaction time, accuracy, and level of confidence were recorded. Experts 

were found to be quicker and more accurate overall. The experts were not 

able to reject the false problems more quickly than accepting the true ones. 

However, there was still some support for the hypothesis that experts are 

not only quantitatively better at task performance, but qualitatively 

different from novices in the type of processing they employ. 
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Error Recognition in Calculus Problems: What Characterizes Expertise? 

Expertise theory has previously shown that experts process 

problems differently than novices do. This has been found across various 

domains. On the surface, it has been found that experts are faster than 

novices at the tasks in their domain. For example, reaction time is the 

defining characteristic of expertise in domains such as typewriting and 

mental calculation. Gentner (1988) used reaction time to define who his 

expert typists were in his study. Staszewski (1988) also used reaction time 

to define expert mental calculators. In tasks such as these, most people 

can complete the task, but the expert is the one who can do it quickly. The 

problem now is to find ways the problems are processed that would justify 

categorization of expertise by speed of processing. 

In the domain of problem solving, reaction time is not necessarily a 

factor defining expertise, but experts usually are faster at solving 

problems in their domain than novices are. An interesting finding by Chi, 

Glaseri, and Rees is that although experts spend less time overall solving 

problems, they spend a greater proportion of their problem solving time 

representing problems than novices do (as cited in Lesgold et aI., 1988). 

This leads to the question of how the experts are representing the 

problems. 

In physics and mathematical expertise research, it has frequently 

been found that problem solvers represent problems in one of two ways, 

surface or deep structure. Using surface structure to categorize problems 

means using information found in the problem statement itself without 

taking anything else into account. Categorizing by deep structure means 

using the underlying theories and principles used in solving the problem. 

Not surprisingly, it has been found that experts generally use deep 
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structure to categorize problems, whereas novices use surface structure. 

This has been found in both physics (Hardiman, Dufresne, and Mestre, 

1989), and mathematics (Schoenfield, 1985). This coincides nicely with the 

idea that experts take a proportionately longer amount of time to represent 

problems than novices. Experts are spending representation time to begin 

solving the problem, but novices are not thinking that deeply yet. In fact, 

Chi, Feltovich, and Glaser (1981) found that novices use surface structure 

to define how to solve problems. Because trying to solve a problem using 

surface structure often leads to errors and "dead-ends", novices usually 

have longer reaction times and lower accuracy than experts. However, all 

is not lost for novices. It has been found that as expertise in physics 

increased, the method of solving went from surface to deep strategies 

(Anzai, 1985). From this body of research, experts are found to differ from 

novices in problem representation and problem solving. 

How might this be used in other types of problem solving tasks? For 

example, what would happen if the task was determining whether 

answers to statements such as "3 x 3 = 7" are. true or false, instead of 

actually categorizing and solving a particular problem? Researchers in 

arithmetic problem solving have been studying this type of problem. 

There have been some interesting findings concerning the rejection of 

false problems. 

In a true/false verification problem, Zbrodoff and Logan (1990) 

hypothesized that verification is not always production plus comparison. 

Supporting this theory is the finding that there is faster than average 

rejection in certain types of problems. For example, Ashcraft and Stazyk 

(1981) found that people reject extreme splits such as "2 x 2 = 13" quickly. 

They believe this happens because people know that it is not conceivable 
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for the answer to "2 x 2" to be so large. Krueger (1986) and Krueger and 

Hallford (1984) found that when certain arithmetic rules are broken, 

rejection comes quickly. So, if "2 x 2 =5" were to be presented, there would 

be quick rejection because it is impossible to multiply two even numbers 

and come up with an odd number. The same rule is applicable to addition 

problems. Another type of problem that usually warrants a quick 

rejection is one in which signs are switched such as "3 + 4 = 12" or " 3 x 4 = 

7" (Zbrodoff and Logan, 1986). 

For the sake of argument, let's call all of the participants in these 

studies experts at arithmetic. They are not necessarily experts at 

calculation like the expert mental calculators in Staszewski's (1988) 

study. However, they have the experience to be labeled experts at addition 

and multiplication. They have a certain way of processing problems that 

includes quick rejection of false problems based on arithmetic rules and 

tricks. They were obviously not compared to novices, but their strategies 

could be useful in determining how experts in higher level problem solving 

accept and reject problems. 

However, there are certain other types of problems that facilitate 

fast acceptance of true problems and slow rejection of false problems. 

Campbell (1987) found that certain false answers can prevent the 

participant from rejecting the problem quickly enough. We replicated this 

study for the purpose of checking to see what kind of effects we would find 

in the multiplication problems. It may be the case that there is a different 

set of thought processes involved in arithmetic as opposed to upper level 

mathematics. 

Since most people are able to reject certain types of false arithmetic 

problems quickly, experts in the field of calculus should be able to reject 
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certain types of false calculus problems quickly. They may be able to do 

this because of knowing certain rules or tricks, much like the odd-even 

rule of arithmetic. They might be able to do it quickly because of their 

deeper representation of the problem itself. However, there is much 

stronger evidence that the experts will be able to reject the false equations 

more quickly than accepting true equations. 

Lesgold et al. (1988) found that medical experts diagnosing X-ray 

images will ignore unimportant surface inconsistencies, and focus right 

on the problem. Novices are distracted by unrelated flaws, leading to 

longer latency to finding the real problem and sometimes inaccurate 

diagnoses. The background essentially disappears for these experts, and 

their attention is automatically focused on the real problem within the X­

ray image. In anagram solving tasks, Novick and Cote (1992) found that 

experts at anagrams saw the answers pop out at them (as cited in Matlin, 

1994). In this case, the foreground is jumping out, instead of the 

background diminishing. In calculus problem solving, one of these two 

ideas might also be happening. The difficulty of the calculus task is that 

the problem space is not visual but mental. Therefore, calculus 

verification would be a combination of the two. However, the answer is not 

what is popping out at the expert. The inconsistency, or the mistake in 

reasoning of the problem, is what is popping out. Therefore, rejection of 

false problems should come more quickly than acceptance of the true 

problems as a result of the extraneous background disappearing and the 

mistake popping out. Novices, however, should have to search for the 

mistake and therefore take a longer overall. 

In a calculus verification task, it should be found that experts are 

faster and more accurate than novices. It should also be found that 
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experts are faster at rejecting false problems then accepting true ones. 

This finding is expected because, this apparently happens in arithmetic 

with certain problems, experts encode problems deeply, and 

inconsistencies in the statement might "pop out" at the expert. 

Methods 

Participants 

Forty-nine participants from Illinois Wesleyan University 

participated. Two professors served as experts, and 47 undergraduate 

students served as novices. There were two groups of novices. Group 1 

consisted of 25 students who had completed the equivalent of 0 or 1 

semester of the three-semester calculus sequence at Illinois Wesleyan 

University. The mean age of group 1 was 19.27. There were 17 males and 

8 females in this group. They had completed an average of .7 semesters of 

calculus. The second group consisted of 22 students who had completed 2 

or 3 semesters of the sequence. The mean age of group 2 was 19.5. There 

were 9 males and 13 females in this group. They had completed an 

average of 2.86 semesters of calculus. Group 3 consisted of two experts, 

both males, with the mean age of 39. They had an average of 22 years of 

experience with calculus. 

Materials 

Stimuli for the calculus study consisted of 68 true/false 

mathematical expressions taken and modified from Purcell & Varberg 

(1987), a typical undergraduate calculus book (see appendix A for example 

expressions). 34 of the stimuli were true statements, and 34 were false. 34 

of the expressions were equations, and 34 were if/then statements 

converted to an equation-type of form with an "implies" sign (~). There 

were 30 typical first-semester calculus problems, 26 second-semester 



•
 
Error Recognition 10 

calculus problems, and 12 third-semester calculus problems. Thus, most 

of the participants should be familiar with some of the problems. There 

was also a Likert scale to assess the participant's confidence that s/he 

answered the problem correctly. 

Stimuli for the multiplication study consisted of 36 true/false 

multiplication expressions from Campbell (1987) (see appendix A for 

examples). 18 of the stimuli were true, and 18 were false. 18 were hard 

and 18 were easy. The experiment was run at a Macintosh Centris 610 

using the SuperLab (1989) program. The Kaufman Brief Intelligence Test 

(K-BIT) (Kaufman & Kaufman, 1990) was used to ensure similar 

intelligence across groups (see Appendix B). The participants also 

completed surveys designed to check their level of calculus knowledge (see 

Appendix C). All participants signed a human-participant consent form 

(see Appendix D). 

Procedure 

Participants first signed the consent form and completed the 

participant survey. They were then given the K-BIT (Kaufman & 

Kaufman,1990). Mter they had completed the K-BIT, they were asked to 

sit in front of the computer for instructions. They were instructed to hit 

one key labeled IItrue II or one key labeled "false" as quickly and accurately 

as possible when the arithmetic expression flashed on the screen. They 

were instructed to keep one finger on the IItrue II key, and one finger on the 

"false" key at all times. All participants used their right hand. When the 

subject read and understood the instructions, s/he pressed the "true" key. 

There was then a 500 millisecond (ms) inter-stimulus interval (lSI), after 

which the problem was displayed. When the participant answered, the 

problem was removed from the screen. Mter all of the arithmetic problems 



11Error Recognition 

were finished, instructions appeared for the calculus expressions. When 

the subject read and understood the instructions, s/he pressed the "true" 

key. There was then a 500 millisecond (ms) inter-stimulus interval (lSI), 

after which the problem was displayed. When the participant answered, 

the problem was removed from the screen. There was then a second 500 

ms delay, after which the Likert scale appeared with the instructions for 

the participant to choose how confident s/he was that s/he got the problem 

right on a scale of 1 (not at all confident) to 5 (very confident) (see Figure 

1). The Superlab program recorded the participant's response to each 

problem, whether it was correct, the reaction time in milliseconds, and the 

confidence rating. 

Results 

The calculus results were analyzed using a 3 (expertise level) x 3 

(problem difficulty) x 2 (problem type) x 2 (truth value) analysis of 

variance (ANOVA), with reaction time as the dependent variable. The 

results are shown in table 1. We were interested in the following effects. A 

significant effect was found for the interaction of group by truth (F[2, 

3286] =3.311, p < .05). A main effect was found for expertise level (F[2, 

3286] =30.64, p < .04). A BonferronilDunn post-hoc test revealed that 

there was a significant difference between all three groups for expertise 

level (see Figure 2 and Table 2). 

Other analyses include a separate analysis of reaction time on a 

subset of the problems where the confidence level was higher than three. 

The only significant effect was of expertise level (F[2, 1693] =9.179, p < 

.0001). Also, an analysis was done on accuracy, as shown in Table 3. 

There was a significant main effect of expertise level (F[I, 3286] = 40.127, p 
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< .0001). Post-hoc tests showed that the difference between all three levels 

of expertise was significant (p < .0001) (see Figure 3). 

Results of the multiplication study were analyzed using a 3 

(expertise level) x 2 (truth value) x 2 (problem difficulty) ANOVA. The 

results revealed significant main effects of truth (F[l, 1748] = 4.223, p < 

.05) on reaction time. The mean of the true problems was 1372.374 ms, and 

the mean of the false problems was 1640.972 ms (see Table 4). 

K-BIT scores revealed that all three groups were within one 

standard deviation of each other. 

Discussion 

The finding that experts are faster than novices in general supports 

the theory that experts complete tasks in their domain faster than novices 

do. It is very interesting to note that the experts had faster reaction times 

than both levels of novice. This seems to be a straightforward finding. 

However, the lower novices had significantly lower reaction times than 

the higher novices. But the low novices were only at about 50% accuracy.' 

This indicates that there was a lot of blind guessing on the part of the 

lower novices. However, the experts were much faster than the lower 

novices, and were much more accurate. This supports the theory that 

experts are solving the problem in ways that are qualitatively different 

from novices. They are able to encode and to solve the problems accurately 

even more quickly than naive subjects are able to guess blindly! 

For this particular study, however, we are interested in the 

interaction of expertise level and truth value. We expected to find that as 

expertise level increased, there is an increase in the difference in reaction 

times of true and false problems, with false problems taking a shorter 
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amount of time than the true problems. However, we did not find this 

effect. There are a few reasons that this might be. 

First and foremost, a major flaw in this study is the small sample 

size of experts. Since there are only two experts in our study, it is 

impossible for us to draw any definite conclusions. Because of the nature 

of expertise, it is hard to find experts to participate in studies. Even when 

they are found, there are problems. For example, Larkin, McDermitt, 

Simon & Simon have found that in the physics domain, novices use 

backward inferences to solve the problems, while experts use forward 

inference. This is almost always agreed upon in literature (as cited in 

Priest and Lindsay, 1992). However, when Priest and Lindsay (1992) used 

a much larger sample size, they found that both experts and novices use 

forward inference. Sample size might need to be taken into account. 

However, the experts in their study were graduate students, whereas the 

experts in our study are professors, who have many more years of 

experience than graduate students. In problem solving tasks, it is widely· 

agreed upon that acquiring expertise takes time and practice. Perhaps 

their finding is a result of the use of graduate students, not sample size. 

Because of this problem, however, it is important to take sample size into 

consideration. Perhaps with a greater sample size, we would have seen 

the desired effect. 

Another potential explanation is that experts may have different 

schemes for processing different types of problems. For example, we found 

the same thing as Campbell in that the true problems were actually faster 

than the false problems in the multiplication study. This is different from 

previous research in the field of arithmetic. So, perhaps the type of 

problem used is a factor. To see if this may be true, the interaction of 
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problem type and expertise in the calculus study was considered. It was 

found that this was not a significant finding. 

However, there may be a potential source of error in the fact that 

there are other differences in the problems themselves. The problems in 

this study were from chapter reviews, intended to make sure the students 

have learned the fine points of the chapter. The novices might not have 

even recognized that these were trick problems. Thus, a different way to 

look at these problems would be to have different levels of error as an 

independent variable. Perhaps experts are better at picking out deep or 

conceptual errors, whereas novices would be better at picking up on 

surface errors. 

One other possible source of error is that not all novices are alike. 

Some may be better problem solvers, and therefore more expert-like in 

their processing. Mathematics is something that follows the phrase "use 

it or lose it". A different measurement may be using two different novice 

groups. All the novices would have the same level of formal calculus 

instruction. This instruction would have to be recent. The characteristic 

that would distinguish the two groups would be grades in the calculus 

classes. Then, if the hypothetical interaction is found, it would give even 

more support to the hypothesis that as novices become experts, they shift 

to expert thought processes, which would agree with the study by Anzai 

(1985). 

This line of research may give us more understanding into the 

expert mind. Perhaps teaching methods could be modified to try to have 

children learning to think like the experts. Dufresne, Gerace, Hardiman, 

Mestre (1992) and Mestre, Dufresne, Gerace, and Hardiman (1993) have 

already found that teaching students to solve physics problems using 
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expert-like strategies leads to more expert-like problem solving. 

Schoenfield (1985) found that this is also true for mathematical problem 

solving. 

One possible application of this study is to take the findings and 

base education ideas on them. In this study, we found more support that 

the experts are quantitatively better than novices in solving problems in 

that they were able to accurately process problems more quickly than 

novices can guess. However, this study was not able to find exactly what 

these quantitative differences are. Consequently, this study would not 

contribute to the educational theories. However, this study could be added 

to the many others in this field, and reviewed with the idea of educational 

implications in mind. The study of the qualitative differences of 

processing between novices and experts is a step toward applying this type 

of research to a real-world situation, education. 
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Appendix A 

Example Calculus and Multiplication Problems 

Calculus 

.J2 .J21n 1tTrue equation: n = e
 

False equation: [f(x)· g(x)]' = f'(x)· g'(x)
 

5
False conditional: y=n ~ Dxy=5n4 

True conditional: y = (X3 + X)8 ~ D;5y =0 

Multiplication 

True easy: 3 x 4 = 12 

False easy: 5 x 6 =35 

True hard: 4 x 9 =36 

False hard: 7 x 8 =48 
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Appendix B 

K-Bit Answer Sheet 
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Appendix C
 

Surveys
 

Background Questionnaire - Expert
 

Please answer the following questions to the best of your ability. 

1.	 Age (years): 

2.	 Sex: 
MALE 
FEMALE 

3.	 Please list some of your hobbies: 

4. Please list all of the classes you are teaching this semester: 

5.	 How much do you use calculus on a daily basis? 
NEVER 
RARELY 
SOMETIMES 
OFTEN 
ALWAYS 

6.	 How many years have you been working with calculus? 

7.	 About how many years has it been since you've had formal 
instruction in calculus? 

8.	 How good of a calculus user do you feel you are? 
EXCELLENT 
GOOD 
AVERAGE 
BELOW AVERAGE 
POOR 
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Back~ound Questionnaire - Novice 

Please answer the following questions to the best of your ability. 

l.	 Age (years): 3. Sex 
MALE 

2. Year in school:	 FEMALE 

4.	 Major: Minor: _ 

5.	 Please list some of your hobbies: 

6. Right now, what career do you plan to go into? Please be as 
specific as possible. 

7.	 Please list all of the college math courses you have taken and 
when you took them: (ex. Calculus 1, 2, linear algebra ­
freshman year, probability, statistics - sophomore year, etc.). 
Write (lP) after any classes in progress. 

8.	 How much do you use calculus on a daily basis? 
NEVER 
RARELY 
SOMETIMES 
OFTEN 
ALWAYS 

9.	 How good of a calculus student do you feel you are? 
EXCELLENT 
GOOD 
AVERAGE 
BELOW AVERAGE 
POOR 
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Appendix D 

Consent Form 



rninois Wesleyqrlllli~aity 25 
Department of Psychology 

Consent Form for Research Participants 

•
 

Title of Study: Experience and knowledge representation in mathematical problem solving 
Principle Investigator: Lionel R. Shapiro, Ph.D. 

This is a study of thinking and how thinking may change under different conditions. We are 
investigating whether factors such as experience change the way that people solve problems. As 
a participant, you may be asked some general information questions pertaining to your medical 
and educational background and then be given two tests: a brief intelligence test which takes 
approximately 30 minutes, and a test involving the solution of mathematical problems, which 
also takes approximately 30 minutes and is administered on a computer. (Please note that no 
computer expertise is required and that your use of the computer will consist only of pressing one 
of two keys.) 

The intelligence test contains items related to your vocabulary and your ability to solve spatial 
problems. The computer test requires you to identify mathematical expressions as either correct 
or incorrect. You will be given several sets of these expressions and the time it takes you to solve 
them will be measured. 

Your intelligence test score, as well as your solution times, will be kept completely 
confidential. Although the data collected today may be published in the future, your name will 
never be connected with your scores or with the study in published form. 

There are no known risks involved with this study, and although some participants may find the 
problems challenging, most do not find the tasks uncomfortable. 

There are no known direct benefits to you as a result ofyour participation in this study, but your 
participation may help others indirectly by providing us with information on the nature of 
thinking. 

As a participant in this study, you have the right to ask questions pertaining to the clarification 
ofyour tasks, and to be informed of the nature of the study before you begin. Your p8rticipation 
is voluntary, and as such, you have the right to refuse to participate or to withdraw from the 
study at any time, with no penalty or loss of benefit. You will receive additional information 
about the study following your participation. You may, ifyou wish, receive a copy of this consent 
form. 

By signing below, you acknowledge that you have read this consent form and you understand 
your rights in this study. 

Name of participant (please print) _ 

Signature of participant _ 

Date signed _ 

Name of experimenter _ 

Signature ofexperimenter _ 

Date signed _ 

Name ofwitne88 _ 

Signature of witness _ 

Date signed _ 
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Table 1 

Analysis of Variance for Reaction Time for Calculus 

Source df SS MS F-value 

E 2 12724763634.103 6362381817.052 30.064* 

T 1 41305657.271 41305657.271 .195 

ExT 2 1401547335.765 700773667.883 3.311* 

PT 1 41956638.517 41956638.517 .198 

ExPT 2 268637530.166 134318765.083 .635 

TxPT 1 352702967.913 352702967.913 1.667 

ExTxPT 2 1474004025.705 737002012.853 3.482* 

D 2 1617985744.810 808992872.405 3.823* 

ExD 4 1186129629.404 296532407.351 1.401 

TxD 2 655380452.882 327690226.441 1.548 

ExTxD 4 341615234.843 85403808.711 .404 

PTxD 2 382896562.054 191448281.027 .905 

ExPTxD 4 255906919.039 63976729.76 .302 

TxPTxD 2 42135925.601 .21067962.800 .100 

ExTxPTxD 4 248650926.008 62162731.502 .294 

Residual 3286 695419374332.719 211630972.104 

Note: E =Expertise Level, T =Truth Level, PT =Problem Type, D =Problem 

Difficulty 

* p < .05. 
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Table 2 

Mean reaction time and accuracy as a function of expertise level. for 

Calculus 

Expertise Level Reaction Time Accuracy 

Low Novice 13074.196 ms .532 

High Novice 16898.068 ms .640 

Expert 7293.089 ms .948 
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Table 3 

Analysis of Variance for Accuracy for Calculus 

Source df SS MS F-value 

E 2 18.413 9.207 40.127* 

T 1 .521 .521 2.271 

ExT 2 .114 .057 .249 

PT 1 .902 .902 3.933* 

ExPT 2 .385 .193 .839 

TxPT 1 .112 .112 .489 

ExTxPT 2 .613 .306 1.335 

D 2 .138 .069 .301 

ExD 4 .510 .128 .556 

TxD 2 .099 .049 .216 

ExTxD 4 1.198 .299 1.305 

PTxD 2 .853 .426 1.859 

ExPTxD 4 .882 .221 .961 

TxPTxD 2 .215 .107 .468 

ExTxPTxD 4 .146 .036 .159 

Residual 3286 753.929 .229 

Note: E =Expertise Level, T =Truth Level, PT =Problem Type, D = 
Problem Difficulty 

* p < .05. 
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Table 4 

Analysis of Variance for Reaction Time for Multiplication 

Source elf SS MS F-value 

E 2 22137226.939 11068613.470 6.298* 

D 1 14648335.386 14648335.386 8.335* 

ExD 2 7825734.005 3912867.002 2.227 

T 1 7420788.580 7420788.580 4.223* 

ExT 2 1215385.626 607692.813 .346 

DxT 1 2141.601 2141.601 .001 

ExDxT 2 697050.763 348525.381 .198 

Residual 1748 3071847919.728 1757350.068 

Note E =Expertise Level, D =Problem Difficulty, T =Truth Level 
* p < .05. 
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Figure Caption
 

Figure 1. Likert scale for confidence judgments.
 

Figure 2. Reaction time as a function of expertise level in calculus (with
 

error bars representing one standard error)
 

Fi~ure 3. Accuracy as a function of expertise level in calculus (with error
 

bars representing one standard error)
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How confident are you of your answer on a scale of 1 to 5? 

Not at all Very 
confident confident

1------1-----------1-----+----1
 
1 2 3 4 5 
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