Synthesis of New Reagents for the Detection of Amino Acids and Fingerprints

Bjorn Borup
Illinois Wesleyan University

Forrest J. Frank, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

https://digitalcommons.iwu.edu/jwprc/1992/posters/50

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
DFO (1,8-Diazafluoren-9-one) is a new reagent for the detection of latent fingerprints. It reacts with amino acids present in fingerprints to give a fluorescent product, and is an improvement over ninhydrin which has been used in forensic laboratories for years. The object of this work was to synthesize new analogs of ninhydrin and DFO. The preparation of 9H-cyclopenta[b]pyrazine-9-one (1) did not succeed. The compound 9H-cyclopenta[1,2-b]pyrazine[3,4-b]pyridine-9-one (3) an analog of DFO is being synthesized via cyclopenta[b]pyridine-5,6,7-trione (2) an analog of ninhydrin.