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Abstract 
 

Stroke is a leading cause of long-term disability with most patients suffering from persistent 

unilateral upper-limb impairments. These impairments impede daily living and independence as 

well as impose many other social and financial burdens. Current rehabilitation methods focus on 

compensatory movements relying largely on the nonimpaired limb. Unfortunately, the current 

methods of rehabilitation do not effectively promote full recovery of motor skills on the impaired 

body side. Rehabilitation in a mouse model of stroke has shown promising results, however, the 

training regimen used is much more intensive than the rehabilitation that human survivors 

receive, and the minimum amount of intensity required to promote functional benefits is 

unknown. The current study aims to investigate the effects of intensity of rehabilitation on motor 

function in the mouse model. Mice were trained preoperatively on a skilled reaching task then 

given a unilateral photothrombotic stroke. Postoperatively, mice received either traditional 

training (15 minutes or 100 reaches daily), low intensity training (10 minutes or 50 reaches 

daily), or modified traditional training (10 minutes or 50 reaches, twice daily). All groups were 

assessed on the original skilled reaching task after 28 training sessions. The results of this pilot 

study were inconclusive. Further research should be done to determine if the rehabilitation 

groups in this study are effective at promoting full recovery of function, with the intent to close 

the gap between the animal model and human outcomes.   

Keywords: stroke rehabilitation, intensity, motor recovery 
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Introduction 
 

There are about 795,000 Americans affected by stroke every year, with a new stroke 

occurring about every 40 seconds (Virani et al., 2020). In fact, stroke is the leading cause of 

long-term disability in the United States, with unilateral upper-limb impairments being one of 

the most common and persistent disabilities in survivors (Krakauer et al., 2012; Bell et al., 

2014). These long-term motor disabilities are burdensome for the individual and their families’ 

due to a loss of independence. With improvements in technology and treatment interventions, 

stroke has become a less fatal injury, resulting in a larger population of people living with long-

term disability (Rimmele et al., 2021). As a result, a majority of stroke survivors are left with 

motor deficits that impede their ability to perform tasks of independent daily living. Chronic 

disability after stroke also has large economic and societal implications (Mascaro et al., 2014). 

In 2014-2015, the United States spent $45.5 billion for the direct and indirect costs of stroke 

survivors (Virani et al., 2020). These values are predicted to more than double by 2035 with an 

estimated cost of $94 billion as the population ages. Long-term healthcare for stroke survivors 

requires a great allocation of resources, making it very important to improve the current 

rehabilitation strategies to allow patients better functional outcomes and greater 

independence. 

 Following a stroke, the brain experiences a period of naturally occurring plastic changes 

known as spontaneous recovery that allows for minimal recovery of motor function. These 

improvements usually occur within the first few months following a stroke. Additionally, the 

improvement rate of motor function in the first month following stroke is a strong predictor of 

overall motor recovery (Stanescu et al., 2019). Experimental models using rodents show that 
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motor function can be further recovered through rehabilitative training (Bell et al., 2014; Kerr 

et al., 2016), however, in human subjects motor function recovery is often incomplete with 

patients averaging only 70% of their prestroke ability after rehabilitative training (Krakauer et 

al., 2012). The rehabilitation effects in experimental models are not replicated to the same 

degree in clinical practice, and it has been hypothesized that differences in rehabilitation 

intensity between experimental models and clinical practice are responsible for the discrepancy 

in recovery outcomes.  

Stroke usually affects one hemisphere of the brain (i.e., is unilateral), leaving the 

contralateral side (the opposite side) impaired. Since only one side of the body is affected, 

there is an impaired body side and a non-impaired (or perhaps more accurately, less-impaired) 

body side following injury. Rehabilitation commonly focuses on compensatory movements 

utilizing the non-impaired limb to allow patients to complete independent tasks of daily living 

and hopefully allow them to return home faster. However, it has been shown that nonuse of 

the impaired limb (which occurs with compensatory training of the non-impaired limb) can 

have detrimental effects for motor recovery (Kerr et al., 2016; Taub et al., 2006). Additionally, 

experimental results indicate that higher intensity rehabilitation of the paretic limb results in 

faster recovery in rodent models (Bell et al., 2014). Unfortunately, the lower boundary of 

intensity has not yet been determined. This study aims to investigate the effects of lower 

intensity training and modified intensity training to help close the gaps seen in recovery 

between experimental models and clinical application.  
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Mechanisms of Stroke 

Ischemic stroke is the most common type of stroke making up 87% of all stroke injuries 

(Salvador et al., 2021). Ischemic strokes are the result of blocked cerebral blood flow, cutting 

off oxygen to the brain. Brain tissue is extremely sensitive to ischemia, with even brief periods 

of occlusion leading to cellular death (Woodruff et al., 2011). Within a few minutes after the 

onset of cerebral ischemia, the cells located in the core of the ischemic infarct suffer necrotic 

cell death, and in the following hours or days after injury a complex chain of neurological 

changes, known collectively as diaschisis, occur in the brain tissue, expanding the injury. The 

cells surrounding the core injury are functionally impaired, but not yet dead and remain 

susceptible to neuronal death-processes including glutamate-mediated excitotoxicity and 

apoptosis (Filippo et al., 2008).   

After cells experience deprivation of oxygen and glucose, they are unable to produce 

ATP to maintain their normal cellular functions. As a result, the ionic gradients are lost and 

glutamate is released from the cell. This glutamate over activates the NMDA glutamate 

receptors, allowing an influx of calcium ions (Filippo et al., 2008). Excess intracellular calcium 

activation ultimately leads to the activation of caspases and other apoptotic molecules, the end 

result of glutamate-mediated excitotoxicity. These processes that occur as a result of ischemic 

injury also play a role in the induction and maintenance of synaptic plasticity and long-term 

potentiation in the brain (Filippo et al., 2008). For example, the influx of calcium ions is an 

essential step in long-term potentiation, which results in a strengthening of synaptic 

connections. Additionally, these pathways modulate the cAMP-response-element-binding 

protein and extracellular signal-related kinase pathway, resulting in activation of proteins 
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responsible for gene expression and synaptic plasticity (Filippo et al., 2008). The pathways 

activated as a result of ischemic injury act to remove the cells that have been damaged beyond 

repair, as well as activating mechanisms to allow for re-strengthening of the synapses that were 

damaged in the ischemic event, but remain viable. Following a stroke there is also a growth 

permissive period that is described in further detail below.  

Early restoration of blood flow is best for optimal outcome in terms of limiting the size 

of injury. With improvements in education and treatment techniques, there has been a 

decrease in morbidity following ischemic stroke, leaving an increasing number of survivors with 

long term disabilities (Woodruff et al., 2011). Among survivors of ischemic stroke, 50% have 

some hemiparesis and 26% are dependent on others for activities of daily living 6 months after 

stroke (Mohaptra et al., 2016).  

Deficit after stroke/long-term disabilities 

Overall, the extent of damage following a stroke is highly variable depending on the 

location and extent of brain damage, but it can leave the individual with severely disabling 

impairments in motor, sensorimotor, and cognitive function (Klein et al., 2012). The most 

common, chronic disability in stroke survivors is upper limb impairments, including hemiparesis 

and weakness (Virani et al., 2020; Cortes et al., 2017). Of the seven million stroke survivors in 

the U.S., up to 88% live with upper extremity motor deficits (Barth et al., 2020) and 50-80% of 

survivors suffer arm paresis persisting up to six months following stroke (Cortes et al., 2017). 

Weakness and paralysis most commonly affect one side of the body, the side contralateral to, 

or opposite, the side of brain damage. Deficits are commonly seen in both strength and motor 

control defined as the ability to make coordinated, accurate, goal-directed movements (Cortes 
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et al., 2017). Skilled arm movements in stroke patients are often described as slow, inaccurate, 

and fragmented (Kantak et al., 2018). Without the ability to make goal-directed movements 

with accuracy and control, the patient's ability to complete activities of daily life such as 

cooking, eating, bathing, and dressing are greatly impeded, often requiring them to be 

dependent on caregivers or family members. Additionally, other aspects of motor control can 

be impacted following stroke, such as walking. While a majority of patients regain the ability to 

walk, they often experience deficits in gait and postural control, rendering these activities 

unsafe to be completed without assistance (Kal et al., 2016). 

The annual stroke death rate has declined by 35.8% over the last decade, resulting in 

more patients living with long term disabilities (Mohaptra et al., 2016). This number is only 

expected to rise with the aging population and current life expectancy. The global lifetime risk 

of stroke has had a relative increase of 8.9% from 1990 to 2016 (Virani et al., 2020). Such 

factors as high blood pressure, smoking, diabetes, and lack of physical activity increase the risk 

of strokes, especially in an aging population. Additionally, stroke survivors are at an increased 

risk of suffering additional strokes or other complications. After the initial high-risk period 

immediately following initial injury, those who have suffered a stroke have a 10-year stroke risk 

of 19% and combined risk of stroke or vascular death of 43% (Virani et al., 2020). With growing 

incidence rates of stroke, the need for improving the current rehabilitation efforts is 

increasingly important.  

Spontaneous recovery 

During the first month after a stroke, the brain undergoes an intense period of plasticity 

resulting in synaptic and structural changes, allowing dynamic change in neuronal connectivity. 
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As a result of ischemia, there is a sprouting of new neuronal dendrites and axons in both the 

perilesional cortex and in regions not related to the lesion (Coleman et al., 2017). There is also 

an increase in growth factor signals that promote synaptogenesis. These changes in neuronal 

structure likely account for the restoration of activity and motor improvements seen in the first 

month after stroke (Krakauer et al., 2012). The widespread changes in connectivity occur in 

both the contralateral and ipsilateral regions of the brain (Krakauer et al., 2012; Lee et al., 

2020). One example of this is cortical reorganization which occurs within the first three days 

following a stroke in mice. During this time, stimulation of the impaired limb leads to activation 

of the ipsilateral brain hemisphere, showing a reorganization of sensory inputs to the intact 

hemisphere (Coleman et al., 2017). This shifting of brain activity is also shown in humans and 

while it provides an adaptive advantage in the moment, eventually, the activity must shift back 

to the impaired hemisphere and the degree to which function shifts back to the injured 

hemisphere is correlated with behavioral recovery (Krakauer et al., 2012).  

Early initiation of rehabilitation resulted in enhanced functional motor outcome in 

animal studies, providing support for the increased plasticity of the brain following a stroke 

(Faralli et al., 2013). It has been said that spontaneous neurobiological recovery is the most 

significant predictor in recovery during the first 8 to 10 weeks post stroke (Zandvliet et al., 

2020). In order to take advantage of the brain’s natural response to stroke through 

spontaneous recovery, there are ways to promote brain plasticity through pharmacological 

agents and physical training (Mascaro et al., 2014).   
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Animal Models of Rehabilitation 

Most of what we know about ways to promote neural plasticity after stroke comes from 

the exploration of animal models. Rodents serve as a promising model for gaining an 

understanding of rehabilitation outcomes for stroke patients. Rats and mice are capable of 

learning skilled reaching tasks that humans carry out daily, such as reaching and grasping 

objects, making them a commonly utilized behavioral model in stroke research (Bell et al., 

2014). In fact, rodents' reaching behavior is very similar to that of humans, and rodents possess 

anatomical similarities to the human forelimb in musculature and skeletal structure, as well as 

the neural control necessary to control movement (Klein et al., 2012). The movements of lifting, 

reaching, and advancing the arm to a target object are controlled mainly by the upper arm with 

assistance from the elbow. They also have dexterity of their digits that allow them to grasp in a 

way very similar to that of humans (Klein et al., 2012).  

Additionally, rodents experience deficits in forelimb function after a stroke that 

resemble the impairments seen in humans (Hsu & Jones, 2006). Analysis of reaching ability in 

rats and mice post stroke shows permanent impairments of finger flexion, wrist rotation, 

sensory abnormalities and compensatory movements similar to those displayed by humans 

including trunk rotation to assist limb movement (Klein et al., 2012). Rodent models have also 

demonstrated a window of spontaneous recovery and response to rehabilitation, much like 

that in humans following stroke.  

Gaps in Rehabilitation 

As stated previously, the brain is subject to neuronal reorganization following ischemic 

injury, indicating an optimal time window for rehabilitation to occur. Additionally, neural plastic 
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changes are influenced by experience, with one of the major drivers of neuroplastic change 

being meaningful behavior, indicating that plasticity can be positively impacted by 

rehabilitation (Carey et al., 2019). It has been shown that high-intensity, repetitive, task-

oriented training results in the greatest improvement in motor recovery after a stroke in 

humans (Connell et al., 2014; Vive et al., 2020). However, the current rehabilitative efforts in 

practice do not achieve the required intensity to maximize recovery.  

 Changing the intensity of training during rehabilitation can influence the recovery 

performance, however most of the research has investigated the effects of increasing intensity 

in animal studies. Bell et al. (2014) showed that increasing training intensity leads to greater 

functional recovery in mice, with animals trained twice a day returning to pre-injury 

performance levels faster than those trained only once a day. In this study however, the low 

intensity group received training for 15 minutes or 100 reaches, whichever occurred first, which 

has previously been identified as more intensive training than what human patients receive 

during their rehabilitation (Krakauer et al., 2012). To investigate the effects of lower intensity 

training, Nemchek et al. (2021) implemented a lower intensity-intermittent training where 

animals were trained every other day on the impaired limb. Their results showed that 

intermittent training resulted in better functional recovery compared to control animals who 

did not receive training, but they performed worse than the traditional training animals which 

were trained daily. This suggests that training every other day is not optimal for maximum 

recovery. These studies indicate that there needs to be further investigation into an optimal 

rehabilitative strategy that more accurately depicts the intensity seen in human trials.  
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Current Study 

The current study serves to further investigate the effects of training intensity to reach 

optimal rehabilitation. It is already known that daily skilled reach training following a stroke in 

rodents results in improved motor ability. However, the appropriate amount of rehabilitation 

required for optimal motor function is still questionable. It has previously been found that 

higher intensity rehabilitation with two daily training sessions of the pasta matrix reaching task 

(PMRT) results in faster acquisition and more persistent performance (Bell et al., 2014). The 

intensity level in the mentioned study allowed for 100 reaches or 15 minutes of training per 

trial. Unfortunately, human stroke patients do not usually receive this level of intensity with 

their rehabilitation. The goal to find a training paradigm that can be reasonably applied to 

humans is still unresolved. Research investigating the lower boundary of intensity in mice 

models found intermittent training of every other day to still be less effective than traditional 

daily training on the PMRT (Nemchek et al., 2021). The current extends on these two findings 

by training mice with a lower intensity of training, 50 reaches or 10 minutes per trial, two times 

a day. The reasoning behind this design is that human rehabilitation relies on compensatory 

movements and as a result is less intense than training done with mice. However, if the 

intensity during a session can be decreased, then the patients could potentially replicate their 

rehabilitation in their own time to allow for optimal motor control improvements.  

Methods 
 
Subjects 

The study began with 40, well handled, 4-month old male C57BL/6J mice. The mice were 

group housed with three or four animals per cage and standardized housing supplementation 



Wyman 12 

including cardboard roll and PVC pipe (Tennant & Jones, 2009). Animals were on a 12:12 light-

dark cycle to maintain normal circadian rhythms. Animals were mildly food deprived 

throughout the study to encourage reaching behavior, with each animal receiving 2.5-3g of 

standard rodent chow daily. Animals were weighed daily with food allotments adjusted to 

maintain at least 85% of free-feeding body weight. Animal use was in accordance with a 

protocol approved by Illinois Wesleyan University’s Institutional Animal Care and Use 

Committee. 

Preoperative Behavioral Methods 

 All animals were trained on the Pasta Matrix Reaching Task (PMRT) to assess skilled 

motor function (Tennant & Jones, 2009). The PMRT took place in a Plexiglass chamber (8.5 cm 

wide x 15 cm long x 20 cm tall) where mice were trained to reach through a small (0.5 cm) slit in 

the center wall of the chamber to break 3.2 cm pieces of vertically oriented, uncooked capellini 

pasta. The pasta pieces were placed 2 mm apart in a 10 x 10 heavy-duty plastic block located 

outside the reaching chamber with half of the pasta piece located down inside the plastic block 

and the other half protruding above. Prior to the beginning of pre-operative training, mice were 

shaped to allow them to designate their preferred limb and introduce them to the reaching 

chamber. Shaping procedures consisted of placing animals individually in the reaching chamber 

with the pasta matrix full of pasta, allowing animals to reach with either limb. Each shaping 

session lasted either 10 minutes or until the mouse reached 10 times. Limb preference was 

determined when a minimum of 70% reaches were made with the same forelimb.  

 Upon determination of limb preference, all mice were trained on the PMRT to establish 

skilled motor performance. During training sessions, the pasta matrix was filled on the side 
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contralateral to the preferred limb, forcing the animal to reach only with the desired forelimb. 

Animals were trained 5 days a week for a minimum of 20 and a maximum of 24 training 

sessions. Each training session lasted for 15 minutes or until the animal made 100 reaches, 

whichever happened first. The number of completed reaches and number of pasta pieces 

broken were recorded. The number of pasta pieces broken during the final three training 

sessions were averaged together to determine the pre-operative performance level. In order 

for the animal to reach criterion and continue in the study, they must have an average 

minimum of nine broken pieces. Those who successfully met criterion (n = 23) were given a 

photothrombotic surgery to induce ischemic stroke contralateral to the preferred reaching 

limb.  

Photothrombotic Stroke Induction 

 Upon the completion of preoperative training on the PMRT, the mice who met criteria 

(breaking an average of at least nine pieces) received a unilateral photothrombotic stroke 

affecting the preferred reaching limb (n=23). Mice were first given an intraperitoneal (i.p.) 

injection of photosynthetic dye Rose Bengal (100 mg/kg; Sigma Aldrich) at least 10 minutes 

prior to laser illumination. Immediately following the Rose Bengal injection, mice were 

anesthetized with ketamine (100 mg/kg; i.p.) and xylazine (10 mg/kg; i.p.). They were then 

placed in a stereotaxic frame and an incision was made midline in the scalp to expose the skull. 

A 532 nm, 20 mW green laser (1 mm in diameter; Beta electronics) was illuminated for 20 

minutes over the exposed skull, directly above (5 mm) the brain region responsible for motor 

movement of the preferred limb ( 0.3 mm anterior to Bregma; 1.5 mm from midline, i.e., 

forelimb reaching area contralateral to preferred limb). The incision was then sutured and 
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treated with antibiotic ointment. Animals were allowed to recover in a heated chamber and 

given buprenorphine (3 mg/kg at 0.015 mg/mL in sterile saline, subcutaneously) as an analgesic 

before returning to their home cages. A total of 6 mice were excluded from the study due to 

surgical complications: one mouse died during stroke induction, the remaining five died or were 

anesthetized within the 48-hour window for failure to thrive after surgery.  

Post-operative Behavioral Methods 

 All mice were given three days to recover from the photothrombotic insult before 

receiving an assessment of their impaired forelimb on postoperative day 4 (POD 4). The 

remaining 17 mice were divided up into 4 postoperative training groups: The traditional group 

(n=4) who received training for 15 minutes or 100 reaches once daily for 28 days, the modified 

traditional group (n=4) who received training for 10 minutes or 50 reaches, two times daily for 

14 days (28 total trials), low intensity (n=5) who received training for 10 minutes or 50 reaches, 

once daily for 28 days, and control animals (n=4) who did not receive postoperative training. 

Groups were matched based on preoperative performance. This difference in training days 

accommodated the different training modalities, such that all animals received the same total 

trials of rehabilitative training. 

 Mice began rehabilitative training on POD 5, with the animals trained to reach with their 

impaired limb on the same PMRT used in the preoperative procedure. Control animals were 

placed in the reaching chambers, but were not given a pasta matrix to reach for. Control 

animals were paired with a trained animal and an equal number of pasta pieces broken by the 

trained animal were dropped into the control animals' chambers. Control animals remained in 

the Plexiglass chamber for the same amount of time as their training partner. All animals were 
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assessed on their impaired limb after 14 and 28 days of rehabilitative training. Assessments 

consisted of 15 minute trials or 100 reaches, whichever occurred first. After all animals 

completed their rehabilitative training, probe assessments were given every 7 days to assess 

the retention of the improvements made in performance from rehabilitative training.  

Tissue Processing and Lesion Analysis 

 After all of the postoperative training and assessments were completed, mice were 

euthanized by 0.2mL of Pentobarbital and transcardially perfused with 50 mL 0.1M phosphate 

buffer, followed by 100 mL 4% paraformaldehyde. Brain tissue was extracted and stored in 4% 

paraformaldehyde. Lesion verification will be performed at a later date.  

Results 

 A one-way ANOVA revealed no statistical differences between groups on the 

preoperative reaching data (F(13,3) = .490, p = .695), indicating that all groups had similar 

preoperative reaching abilities. 

 Statistical analyses were performed using repeated measures ANOVAs looking at the 

success of reaches across assessments, post-operative day, and rehabilitative trials. Results can 

be viewed graphically in Figure 1, Figure 2, and Figure 3. Within subjects effects reveal a 

significant main effect of Assessment (F(5,65) = 8.703, p < .001). The main effect of Assessment by 

Day interaction was not significant (F(15,65) = 1.556, p = .112). Additionally, there was no main 

effect of Group in the between subjects analysis (F(3,13) = 2.425, p = .112), indicating no 

difference in assessment performance among the different treatment groups.  
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Figure 1. All animals performed similarly on preoperative assessments. Following the 

completion of rehabilitative training, animals across all groups were still not performing 

at their preoperative levels and there was not a significant difference in reaching 

success among the groups. 

 

 When looking at reaching success by trial (depicted in Figure 2), within subjects analyses 

revealed a significant main effect of Trial (F(27,270) = 3.098, p < .001) and a Trial by Group 

interaction (F(54,270) = 2.293, p < .001), indicating that all animals exhibited changes in reaching 

success across rehabilitative trial. However, there was not a significant main effect of Group in 

the between-subjects analysis, (F(2,10) = 3.00, p = .095), suggesting no difference in performance 

between treatment groups.  
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Figure 2. Reaching success by trial shows that animals showed differences in their 

performance on individual training trials. However, there were not significant 

differences in the performance among the different treatment groups. 

  

Finally, within subjects analyses revealed a significant main effect of Postoperative Day 

(F(13,130) = 4.795, p < .001; Figure 3) and a significant Postoperative Day by Group interaction, 

(F(26,130) = 2.204, p = .002), indicating all animals exhibited changes in reaching performance 

across postoperative day. Similar to the previous analyses, there was not a main effect of Group 

in the between-subjects analysis, (F(2,10) = 2.173, p = .165), revealing no difference in reaching 

success between treatment groups.  
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Figure 3. Reaching success depicted by training day showed no significant differences 

among the treatment groups. All animals appeared to be improving until around day 10 

or 11 when performance begins to decline across all groups and persist throughout the 

completion of training.   

 

The means, standard deviations and standard errors of means for postoperative 

assessments are depicted in Table 1 below. Means and standard errors for individual training 

sessions can be provided upon request.  
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Table 1  

Table showing means, and standard errors among all groups for all assessments 

 

 

 

Post-Operative Reaching Success  

 Pre-Op Average
  

Mean St. Dev SEM 

Pre-Op  Traditional 9.50 .431 .216 

 Modified Traditional 9.75 1.100 .550 
 Low intensity 10.20 1.466 .656 
 Control 9.50 .431 .216 

Assessment 1 Traditional 7.25 1.708 .854 
 Modified Traditional 6.75 1.258 .629 

 Low intensity 8 1.581 .707 

 Control 10 1.826 .913 

Assessment 2 Traditional 3.50 3.109 1.554 

 Modified Traditional 4.25 1.708 .854 

 Low intensity 6.4 1.673 .748 

 Control 5 3.830 1.915 

Assessment 3 Traditional 2.75 3.096 1.548 

 Modified Traditional 0.75 1.500 .750 
 Low intensity 7.6 5.413 2.421 
 Control 1.5 .577 .289 
Assessment 4 Traditional 6.5 3.109 1.554 
 Modified Traditional 4.75 5.500 2.75 

 Low intensity 5 3.742 1.673 

 Control 2.25 2.630 1.315 

Assessment 5 Traditional 6.25 3.686 1.843 
 Modified Traditional 9.50 1.000 0.500 
 Low intensity 9 2,345 1.049 
 Control 8.75 2.217 1.109 
Assessment 6 Traditional 5.25 3.304 1.652 
 Modified Traditional 5.75 3.100 1.548 
 Low intensity 6.8 2.588 1.157 

 Control 7.75 .957 .479 
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Discussion 

 This study is a pilot study and, as such, concrete conclusions cannot be drawn from the 

data. However, for the purposes of this thesis project, I would like to speculate what the 

current data might indicate and how it could be improved upon to find more conclusive results.  

Analysis of brain tissue and lesion verification will occur at a later date and will be very 

important for this study, especially since the behavior did not follow the typical pattern 

expected in this type of study. Across all groups, the animals performed surprisingly well on 

their first assessment on POD 4. This might indicate that the lesion was not as large as we 

originally thought, and thus did not have as much of an impact on their reaching ability. 

Interestingly, there was a large drop in all animals’ reaching success after assessment 1, which 

does suggest that they received strokes. In fact, the data recorded on POD 5 actually resembles 

what is typically seen in the first assessment on POD 4. The photothrombotic stroke model is a 

progressive lesion (Labat-Gest & Tomasi, 2013), but data have consistently reported deficits 

after four days (Nemchek et al. 2020a and b; Bell et al., 2014). The delay in reaching impairment 

is an interesting finding, and tissue analysis will give further insight into possible reasons this 

may have happened.  

Additionally, the rate of spontaneous recovery seems to be delayed in these animals as 

well. Typically, the control animals, who do not receive any rehabilitative training, do show 

some improvements on their reaching abilities after their initial post-stroke assessment, 

although they do not always reach preoperative performance levels (Bell et al., 2014; Kerr et 

al., 2016; Nemchek et al., 2021). The control animals in this study show a decrease in reaching 

success until after assessment 4, on POD 41, at which point they begin to show improvements 
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that persist for the remainder of the study. This is atypical, as the animal rehabilitation 

literature has shown that spontaneous recovery usually happens in the first month after a 

stroke, when the brain is the most plastic. Human stroke survivors also exhibit some level of 

spontaneous recovery, again with most of the gains demonstrated in the first three months 

after stroke (Wahl & Schwab, 2014). 

One of the major complications in the data is that there does not appear to be 

rehabilitation with traditional postoperative training. During training and immediately after, 

animals across all groups were performing at their worst, even worse than immediately 

following their strokes. This is inconsistent with all of the data that has previously been 

collected in the lab, as well as the literature consensus (Tennant et al., 2009; Kerr et al., 2016; 

Bell et al., 2014). Since we did not replicate the rehabilitation effect in the traditional training 

group, we cannot make any claims about what is happening in the modified traditional and low 

intensity groups. There may be some suggestion that the low intensity training group is a 

sufficient treatment based on their late assessment data, however we cannot be sure about 

this without a definite rehabilitation effect control group to compare to. What is interesting is 

that beginning at assessment 4, one week after training ended for the low intensity and 

traditional training groups, animals did exhibit improved performance. This suggests that 

assessment 3 was an anomaly which will be explained in greater detail below.  

Another important consideration in this study is how we tested rehabilitation 

improvement. When the animals performed their assessments, they all consisted of 100 

reaches or 15 minutes, whichever occurred first. The modified traditional rehabilitation group 

and low intensity group were used to only performing 50 reaches during their training sessions. 
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It is possible that they learned that they did not have to reach as many times during their 

sessions than they previously were during the preoperative training. It is also possible that 

these animals did not have the physical stamina to reach 100 times in a session and became 

fatigued during their assessments. This could contribute to their lower levels of reaching 

performance during assessments, especially assessment 3, since many animals did not perform 

100 reaches during that trial. However, the low intensity training group seemed able to perform 

100 reaches without trouble during most assessments, so it seems like 100 reaches for an 

assessment is suitable and something the animals are capable of performing. As mentioned, it 

is also what all animals were trained to do preoperatively, so while it was not immediately 

familiar to some animals reaching less postoperatively, it was not novel. Perhaps, performing 

two sessions in one day made the modified intensity group more fatigued than the lower 

intensity group, but they are ultimately performing the same total number of reaches that the 

traditional rehabilitation group received, so there is no reason to believe that the modified 

traditional group is too intense of training that would hinder their performance. Additionally, 

the animals in the modified traditional training group completed their rehabilitation before the 

other groups since they were training twice a day, compared to only once a day. The modified 

group would have then had 14 days without training before assessment 3, while the other 

animals were still training daily. This could also contribute to the decreased reaching attempts 

seen in assessment 3, since they had not been performing the task in a while. However, the 

control animals did not have a pasta matrix in front of them and did not perform reaches during 

any of the training sessions, and they still were capable of completing the assessments and 
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performing 100 reaches, indicating that the rest period the modified traditional group received 

should not have disrupted their reaching abilities.  

For argument's sake, it seems as though the third assessment was an anomaly, and it is 

likely that there were abnormalities in the environment that we were not aware of while 

conducting assessments. This speculation is based on the lack of reaching behavior widespread 

across groups, as well as a couple animals who were overweight. If assessment day 3 data is 

excluded, and assessments 2, 4, 5, and 6 are analyzed, it appears as though we have replicated 

the rehabilitation effect. It also appears as though modified traditional and low intensity 

training methods are effective treatment options. This is a very interesting finding and should 

be investigated further, with a larger sample size to distinguish between minor differences 

between the low intensity and modified traditional groups that may not be present in the 

current study.  

Looking at the rehabilitation success by day also shows interesting results. First, it 

appears as though there was an external change around day 10 or 11, as all of the animal 

groups seemed to be rehabilitating until this point, in which the performance levels of all 

groups dramatically decreased. Reaching success picks back up again in the later probe 

assessments, specifically assessment 5 and 6, suggesting that the animals did rehabilitate their 

impaired limb, they just were not utilizing it during the late postoperative training days. This 

could have occurred as a result of fatigue or a lack of motivation. Additionally, during those 

later assessments, all groups were performing better than the control animals, indicating that 

the rehabilitative training was effective at improving motor function of the impaired limb.   
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Future Directions 

 The most obvious limitation to this study is the sample size. It is very difficult to analyze 

the effects of different treatment groups with only four or five animals per group, and 

especially difficult to perform statistical analyses on small groups. With a small sample size, any 

outliers have a significant impact on the overall group averages, which normally flushes out in a 

larger group size or can be systematically identified and eliminated. To improve on this study, 

and be able to draw conclusions on the effects of different rehabilitation manipulations, the 

sample size should be at least 7-10 animals per group.  

 Another suggestion for replication of this study in the future should ensure that animals 

are weighed every day, and maintained at 85% of free feeding body weight to increase their 

motivation for reaching performance. During the current study, animals were weighed at least 

5 times a week to determine food allotments, with the assumption that the amount of food 

provided over the weekend could be kept consistent. As it turns out, this is not as reliable as 

expected. As a result, there were instances of mice being over their 90% free-feeding weight 

during rehabilitation training or assessments, negatively impacting their total reaching 

performance. Additionally, maintaining the animals closer to their 85% free-feeding weight 

instead of 90% should increase their motivation to reach for pasta. It also allows for more 

leniency in weight shifts from day to day, as they would be more likely to remain below their 

90% weight, and motivated to reach for pasta.  

 Lastly, consideration of the training and testing parameters in future studies is incredibly 

important. This study aims to shed light on the effects of different intensity levels of 

rehabilitation training on functional motor recovery. We know that experimental models of 
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stroke rehabilitation are more intense than what human patients receive in clinical settings. In 

order for patients to reach the higher level of intensity that is required for optimal recovery, it 

is possible for the patients to break up their rehabilitation into multiple sessions, while still 

allowing for them to reach the total intensity in a daily session that is necessary for recovery, 

modeled by the modified intensity training group. Additionally, the lower boundary of intensity 

has yet to be determined, which was investigated in this study by the lower intensity training 

group. Both modified intensity training and lower intensity training groups were expected to 

perform 50 reaches, but were limited by a maximum time allowance of 10 minutes. It is 

possible that removing that time allowance and just focusing on the total number of reaches 

performed, would give more insight into the success of the rehabilitation training. The main 

goal of the rehabilitation training is for the animals to perform a specific number of reaches 

that is correlated with different intensity levels. It is possible that when these two groups did 

not perform 50 reaches, it was due to a lack of time, and if they had performed the maximum 

number of reaches during each training session, the results of their reaching success and total 

recovery may have been higher. In future studies, providing a more gracious time allotment 

that does not interfere with their ability to achieve the goal number of reaches per trial, might 

allow for greater recovery and shed more light on the effectiveness of these different training 

groups.  
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