May 2015

No Smoking: Policy Diffusion and its Prevailing Factors

Brad Gresik
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/respublica

Part of the Political Science Commons

Recommended Citation
Available at: https://digitalcommons.iwu.edu/respublica/vol19/iss1/11

This Article is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by editorial board of Res Publica and the Political Science Department at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
No Smoking: Policy Diffusion and its Prevailing Factors

Abstract
Over the past few years, many states have taken steps to ban smoking in public areas. The process of specific polices spreading across state lines is called policy diffusion. Statewide anti-indoor smoking bans are utilized to demonstrate what the most prevailing factors in policy diffusion are. A two-step approach to analysis is implemented, first looking only at simple policy adoption among the 50 states, and secondly the rate at which the policy expands across the country. A strong presence of local ordinances, nearby neighbors with statewide bans in effect, and a history of smoking preemption laws are found to be the most statistically significant of a list of variables. Because diffusion of this policy is entering its final stages, this research can be used as a reference for designing and implementing policy diffusion studies in the future.
NO SMOKING: POLICY DIFFUSION AND ITS PREVAILING FACTORS
Brad Gresik

Abstract: Over the past few years, many states have taken steps to ban smoking in public areas. The process of specific policies spreading across state lines is called policy diffusion. Statewide anti-indoor smoking bans are utilized to demonstrate what the most prevailing factors in policy diffusion are. A two-step approach to analysis is implemented, first looking only at simple policy adoption among the 50 states, and secondly the rate at which the policy expands across the country. A strong presence of local ordinances, nearby neighbors with statewide bans in effect, and a history of smoking preemption laws are found to be the most statistically significant of a list of variables. Because diffusion of this policy is entering its final stages, this research can be used as a reference for designing and implementing policy diffusion studies in the future.

INTRODUCTION

Good ideas simply do not materialize as law in every state. Instead, these ideas slowly spread from state to state based on a variety of internal and external factors, a process called policy diffusion.170 The phenomenon of progressive ideas spreading due to specific circumstances has long been debated by scholars, generally requiring a two-fold examination to understand a policy’s diffusion. First, one must compare the circumstances of states that have adopted or not adopted the policy in question. Once that is established, it becomes necessary to examine why a policy diffused so rapidly in some states and lagged in others. The aim of this research is to determine both of these components in regard to Anti-Indoor Smoking Bans (AISBs).

AISBs are important to the study of policy diffusion because they can be broadly applied as a model for the study as a whole. This is due to the pressure to pass an AISB coming from different levels of federalism. In the past, the push has primarily been from local and state pressure, but as of September 2013, federal funding is now being put towards anti-smoking policies. AISBs also represent a policy which is still diffusing. For example, Indiana passed a comprehensive AISB in July of 2012, a full 17 years after Utah pioneered the policy in 1995.171 AISBs also are important to examine because they are “fact-based” rather than a “moral-based” policies.172 For instance, a state policymaker can look at same-sex marriage and be morally opposed to it, and in their mindset, have a reasonable rationale for excluding that policy. Smoking leading to cancer, heart failure, and stroke is something that is an accepted fact in the majority of U.S., which therefore represents an interesting take on how a baseline policy can be diffused. Due to these factors, this research can be used as a jumping off point for other studies in the future and as a point of comparison.

LITERATURE REVIEW

A compelling diffusion analogy once observed that “a sense of political ‘Stockholm Syndrome’ exists, where a piece of radical legislation gets passed by the Swedes, then it’s flown directly to the U.S. and is passed into law in California. Then it’s flown to Wisconsin. Then to New

170 Shipan and Volden 2006
171 Americans For Non-Smokers’ Rights 2013
172 Shipan and Volden 2006
York. By the time it gets to Mississippi, which is about four years later, it’s a national birthright.”\(^{173}\) This idea of policy diffusion was first widely made popular with Jack L. Walker Jr.’s 1969 groundbreaking work “The Diffusion of Innovations among the American States,” which still stands as a cornerstone of diffusion research.\(^{174}\) Walker proposed the idea that the country has several competitive regional leaders that emulate each other so as not to appear left behind. Using dozens of different cases, Walker classified states as leaders, pioneers, and followers, defining their role in the diffusion process while leaving many questions to future scholars. Some of these pivotal questions include what actually makes a state more or less prone to new ideas, and what is the biggest determinant of adoption probability.

Virginia Gray began to tackle this problem in the years following Walker’s work and began to better frame the question researchers need to examine. By looking at several different policies across what V.O. Key called the “have-not spectrum” including education, welfare, and civil rights, Gray determined that it is almost impossible to find a catch-all diffusion model that will inherently help define all future studies.\(^{175}\) Most importantly, she found that all examinations of policy passage need to be observed as time-specific, noting that states can change dramatically in as little as a decade. Also emphasized was the importance of differing levels of federalism, as policy diffusion trends looked completely different in cases where, for example, federal influence was exerted rather than just state and local influence. Finally noted was the importance of current political and economic conditions of the state during the time of passage. For example, a unified legislature combined with a strong current economy might provide incentive to pass a politically turbulent policy where before it might have been overlooked.

In a direct response to Gray three years later, Robert Eyestone claimed that it would be irrational to dismiss policy diffusion as a case-specific phenomenon and identified key trends that drive policy diffusion. Most importantly, it was found that even when a multitude of different policies were controlled for, several states were always leaders in early adoption. However, as Eyestone notes, “Diffusion patterns may record the spread by necessity rather than the emulation of virtue: leaders may lead because they are also the first to suffer industrial growth which creates demands for state policy responses.”\(^{176}\) Eyestone summarizes that for policy diffusion to be truly understood, it must be battered with a multitude of independent variables, as the interactions between many allow the true result to reveal themselves. The main message is that for diffusion to be understood, many different models with the same policy must be run. A method which can be

\(^{173}\) Shaw and Renner 2002
\(^{174}\) Jack L. Walker 1973
\(^{175}\) Grey 1973
\(^{176}\) Eyestone 1977
inferred from these authors suggests examining both simple adoption of a policy and then going back and surveying the rate at which that policy was adopted. Without both parts of the puzzle, the full story remains obfuscated.

The next major contribution in policy diffusion theory came with Berry and Berry’s 1990 diffusion analysis. By using the policy of state lottery adoptions, they determined that many previous studies had completely ignored the impact of internal factors, such as state legislature and local municipality makeup, and external factors, such as the number of nearby state powers with similar policies. The usage of a less controversial topic like lotteries as opposed to something more heated like gun control also provided future scholars the ability to look at these two different categories as separate beasts. In a nutshell, Berry and Berry proved to be groundbreaking due to the fact that they had concrete proof of three principles: “the probability of state innovation is directly related to the motivation to innovate, inversely related to the strength of obstacles, and directly related to the availability of resources for overcoming these obstacles.”

This not only confirms that both Virginia and Gray were correct in their papers, but also gave more context to Walker’s first proposal. Due to the establishment of definite diffusion facts, Berry and Berry’s article is easily one of the most cited research endeavors in the field of policy diffusion.

While the evaluation of macro-influences were being gauged and discussed, several scholars such as John Kingdon and Michael Mintrom took a micro-approach to policy diffusion via the importance of policy entrepreneurs. Policy entrepreneurs can be defined as “people who seek to initiate dynamic policy change.” In layman’s terms, this comes down to individual politicians, grassroots organizations, and lobbying institutions. Both Kingdon and Mintrom arrive at the conclusion that policy diffusion absolutely hinges on the success or failure of these groups in making their case to legislatures and the public. Even when controlled across several policies and time, it was found that effectiveness of policy innovators is statistically significant. Ignoring them would deprive a study of getting the full scope of what is occurring during the moment of policy diffusion.

One interesting method that had not been considered was the notion of examining policies that do not get adopted and comparing them to those which do. Craig Volden took this approach, and his findings were quite strong in reaffirming many central tenets of policy diffusion. Firstly, he noted that polices that do gain national and regional momentum usually have a watershed moment, during which they gain traction and are adopted by many states in a very short period of time. Those

177 Berry and Berry 1990
178 Kingdon 1984
179 Mintrom 1997
180 Mintrom et al. 1997
that do not typically have a very slow start and tend to lead nowhere. When looking at children’s health insurance programs, Volden also found that while diffusion does typically occur regionally with leaders taking the initiatives first, diffusion occurs most rapidly between states that are located geographically close while simultaneously having a similar economic and political makeup.181

The most relevant literature in regard to this research paper comes from Shipan and Volden in 2006.182 They were the first to attempt to solely look at AISBs and attempt to explain their diffusion across state lines. This work is significant as it identifies what makes up an AISB and labels smoking as a fact-based policy. They also utilized the idea of the watershed moment and were able to successfully create a working model of policy diffusion incorporating many of the lessons learned by earlier diffusion scholars. These lessons include incorporating regional importance, policy entrepreneurs, and several unique models. However, their models missed several key variables, such as constituent makeup, and they examined the policy when it was still very young. To put in perspective, over 20 states have adopted AISBs since 2006, which indicates that the study completely missed the rapid watershed phase; in fact, it had only just begun.183

HYPOTHESES

My hypotheses for this project reflect the two-stage design explained in the literature review. My first hypothesis examines strictly policy adoption. The second looks at those states that as of October 2013 already have policies in place, and assesses the rate in which the policies were passed.

H1: Having a significant percentage of the population already covered by AISB local ordinances will lead to a state adopting a comprehensive AISB.

H2a: Geographical closeness to leader states will be the leading cause the rate of AISB to increase.

H2b: Internal state features will be the leading cause of AISB adoptions.

METHODOLGY

This research is based on a combination and adaption of the tests administered by Shipan and Volden (2006) as well as Berry and Berry (1990). I will examine all 50 states and their adoption of AISBs between 1995- September 2013. The first module will be a simple Pearson’s \(r \) to determine if there is any connection at all between the two dependent variables that will be tested, policy adoption and rate of adoption. Next a binary logistic regression will be implemented with policy adoption as the dependent variable. These results will then be compared with the final module, which is an ordinary least squares regression with the rate. I observe rate of adoption in terms of simple years and do not utilize months, so a policy passed in November 2008 and December of that same year will receive the same score of 13 years.

181 Volden 2006

182 Shipan and Volden 2006

183 Ibid.
RESEARCH DESIGN

As stated earlier, this research relies on two different dependent variables and the evaluation of both of them to get the full picture of policy diffusion. My first of these variables, Policy Adoption, is simply a dummy variable which assigns a 1 to states which have a statewide comprehensive AISB. Given consideration to the literature and how similar policies can carry the same theme, a state will be evaluated to have an AISB if they have 2/3 of the parts necessary to have what is considered a comprehensive smoke-free state: 100 percent smoke-free non-hospitality workplaces, 100 percent smoke-free restaurants, and/or 100 percent smoke-free bars. My second dependent variable is named Rate of Adoption. The rate of adoption is the number of years that have passed since the first statewide AISB took place in 1995. I am counting the years since the first case, not months. Due to the serious chance of data overlap and inconsistency with several other independent variables that rely on the date being accurate, I believe simpler is better in this case and paints a more accurate picture.

One of the most critical intervening variables being analyzed is one which captures the pressure of local laws and ordinances. Retrieving these data was an arduous task, and was drawn by adding up the overall percentage of a state’s population already covered by local AISBs in place the day that the statewide comprehensive AISB took effect. A chronological table of state and local AISB laws along with a percentage chart of U.S. population covered by 100 percent Smoke-Free laws were examined, which allowed a Proportion of State Population with Local Restrictions variable to be generated. By using multiple data sources, I was able to avoid double counting data for cases that might have overlapped (like Sacramento versus Sacramento County laws). If a state does not have an AISB in place, I used the percentage as of October 2013.

The proximity variables were measured by breaking the concept into two parts to capture the idea of geographical pressure influencing policy diffusion. First, I looked at regional adoption. I did this by dividing the country into 4 semi-homogeneous partitions based off the Census Bureau’s regional map. The regions used are West (including Hawaii and Alaska), Midwest, South, and Northeast. I then counted the number of states in that given region that had an AISB in place when the state being examined passed theirs and divide by the total of regional states minus one to account for the state itself. This culminates to the production of a Regional Adoption variable. For example, Florida would receive a .083 because 1/12 of the other southern states already had a comprehensive AISB in place. I implement a similar scheme for the Bordering State Adoption variable as similarly

184 Americans For Non-Smokers’ Rights 2013
185 Ibid.
186 Americans For Non-Smokers’ Rights 2013
187 Ibid.
implemented by Shipan and Volden (2006).188 A state receives this score based on the percentage of states that share any direct border with the state being examined. This information was collected from the Americans for Non-Smokers’ Rights interest group.

To capture internal state governance similarities, I use a variety of variables. First, I implement the Legislative Professionalism variable, and use the Squire scale and directly place every state’s 2003 legislative professionalism score into SPSS. Legislative professionalism scores are based on a variety of things, such as how many days the general assembly is in session. The result of this process is states like California, whose state legislature essentially prepares policymakers for the national political scene, receive a higher score than places like Idaho, where the legislature is very speed orientated and lawmakers are more lax. Next I use the Congressional Quarterly Political Encyclopedia of U.S. States and Regions to look at my Democrat and Republican Unity dummy variable. For a state to score a 1, the year their AISB was passed both upper and lower house along with the governor must be from the same party.189 If the state has not passed an AISB, I use October 2013 as the date to record. I also use a dummy variable I call Historical Preemption, again drawing from the Americans for Non-Smokers’ Rights database and give a state a 1 if they have had any kind of AISB preemption law since 1995, when the first statewide ban took effect until October 2013, the cutoff date for my model. Finally, I used the variable Government Ideology to capture government preferences, as opposed to constituent ones, because “all else equal, a more liberal government prefers a higher level of government activism.”190 I use the historical state score from Berry et al. (2010) to determine the figure and use the date of when a state passed an AISB. For those states that passed statewide AISBs after 2010, I referred to Richard C. Fording’s database, which has the updated figures until October 2013. For those states who do not have a statewide AISB, I used the October 2013 score.191

I then turn my attention to the people that comprise the state, and insert several variables based on their traits. I use Berry et al.’s citizen ideology score to represent the constituents in a state.192 I directly place this score (from the year the AISB was placed or October 2013 if none) into SPSS and named it Citizen Ideology. I also examine historical median income from the US Census Bureau and use a similar measure of entry into SPPS, again using the dates an AISB was in place (or October 2013 if none) I call this variable Median Income.193

188 Shipan and Volden 2006
189 Winkler 2008
190 Volden 2006
191 Fording 2013
192 Berry and Berry 1990
193 US Census Bureau 2013
Tobacco usage and production must also be considered when looking at anything related to anti-smoking. I used historical smoking rates from when a state passed an AISB or 2013 if AISBs were not present. I obtained this information from the American Lung Association. I named the created variable Smoker Percentage. To capture the idea of a tobacco producing state and the ramifications, I use a dummy variable called Tobacco Producing State, and give a 1 to those states which grow or produce tobacco products and 0 to those who do not.

Finally I construct two opposite variables which examine lobbyist influence in a state and name them Tobacco Lobby Percentage and Health Lobby Percentage. The figures are taken from a 1996 snapshot study conducted by Goldstein and Bearman. The measure is “a ratio of the number of health (or tobacco) lobbyists in the state to the total number of registered lobbyists present.”\(^{194}\) Together I believe these variables accurately reflect the many scholars who wrote diffusion literature recommend as a “comprehensive analysis of policy diffusion,” and truly capture the whole picture of what is happening in statewide comprehensive anti-indoor smoking bans.

RESULTS

<table>
<thead>
<tr>
<th>Table 1: Pearson’s r correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
</tr>
<tr>
<td>Policy & Median income (-.369)</td>
</tr>
<tr>
<td>Policy & South (-.646)</td>
</tr>
<tr>
<td>Policy & Citizen ID (.564)</td>
</tr>
<tr>
<td>Policy & T. Producing State (-.305)</td>
</tr>
<tr>
<td>Policy & Percent Smokers (-.444)</td>
</tr>
</tbody>
</table>

Table 1 is the statistically significant Pearson’s r correlations between the two dependent variables in the equation. Between both simple policy adoption and adoption rate, the only common correlation between the two was Percent Smokers. It has a negative correlation at -.444 and was statistically significant at the .05 level for policy adoption, meaning more smokers will lead to less of a chance for an AISB to be in place in that state. For adoption rate, Percent Smokers had a positive correlation of .632 and was actually significant at the .01 level. Other statistically significant adoption rate correlations included median income, south, citizen ideology, and if the state is a tobacco-producing one. Adoption rate correlations appeared to be based along geographical lines, with both my proximity variables of regional adoption and direct border state adoption variables were statistically significant at the .01 level. To no one’s surprise, there was a negative correlation between unified republicans and the adoption rate of AISBs. Most notably absent from both policy and years were the variables Unified Democrats and Government Ideology, which in this early test might signal that in this particular policy, constituent makeup matters more than governmental.

\(^{194}\) Goldstein and Bearman 1996
Table 2: Binary logistic regression of simple policy adoption

<table>
<thead>
<tr>
<th>Model</th>
<th>Exp(B)</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>.009</td>
<td>.25</td>
</tr>
<tr>
<td>Municipality</td>
<td>.928</td>
<td>.049*</td>
</tr>
<tr>
<td>Professionalism</td>
<td>1.03</td>
<td>.679</td>
</tr>
<tr>
<td>Unified Republicans</td>
<td>.102</td>
<td>.234</td>
</tr>
<tr>
<td>Unified Democrats</td>
<td>6.85</td>
<td>.293</td>
</tr>
<tr>
<td>Citizen Ideology</td>
<td>1.215</td>
<td>.015*</td>
</tr>
<tr>
<td>Government Ideology</td>
<td>.938</td>
<td>.110</td>
</tr>
<tr>
<td>Tobacco Producer</td>
<td>.90</td>
<td>.066</td>
</tr>
<tr>
<td>Preemption History</td>
<td>1.470</td>
<td>.836</td>
</tr>
<tr>
<td>Median Income</td>
<td>1.056</td>
<td>.593</td>
</tr>
</tbody>
</table>

R² = .735

Table 2 represents my first stage of policy diffusion. The dependent variable in this binary logistic regression was whether or not a state simply had a comprehensive AISB or not. The R² was .735, which allows us to say that the model explains 73.5 percent of the variance in the dependent variable. Of the variables listed above, only the percentage of state covered by local ordinances and citizen ideology were statistically significant at the .05 level (.049 and .015 respectively).

Professionalism, unified democrats and republicans, government ideology, if the state was a tobacco producer, preemption of AISBs, and median income were all statistically insignificant. These initial findings appear to be in line with what other researchers have found to be primary determinants of policy diffusion but with several key exceptions. All of the factors which represent state-level influences, such as government ideology and unified legislatures played zero role in determining the passage of a statewide AISB. The influence of municipality passage also appears to have diminished since Shipan and Volden’s similar endeavor in 2006, which across the board found .01 significance level, most notably with local ordinances.
Table 3: OLS regression of policy adoption rates.

<table>
<thead>
<tr>
<th>Model</th>
<th>T-Score</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>.992</td>
<td>.333</td>
</tr>
<tr>
<td>Municipality</td>
<td>1.072</td>
<td>.296</td>
</tr>
<tr>
<td>Percent Region</td>
<td>2.372</td>
<td>.028*</td>
</tr>
<tr>
<td>Percent Touching</td>
<td>.377</td>
<td>.71</td>
</tr>
<tr>
<td>Professionalism</td>
<td>-1.904</td>
<td>.071</td>
</tr>
<tr>
<td>Median Income</td>
<td>-.344</td>
<td>.735</td>
</tr>
<tr>
<td>Unified Republican</td>
<td>-.643</td>
<td>.527</td>
</tr>
<tr>
<td>Unified Democrat</td>
<td>1.016</td>
<td>.322</td>
</tr>
<tr>
<td>South</td>
<td>1.687</td>
<td>.107</td>
</tr>
<tr>
<td>Preemption</td>
<td>-2.12</td>
<td>.047*</td>
</tr>
<tr>
<td>Citizen Ideology</td>
<td>-.207</td>
<td>.838</td>
</tr>
<tr>
<td>Government Ideology</td>
<td>-.274</td>
<td>.787</td>
</tr>
<tr>
<td>Tobacco Producer</td>
<td>.864</td>
<td>.398</td>
</tr>
<tr>
<td>Percentage Smokers</td>
<td>.869</td>
<td>.395</td>
</tr>
<tr>
<td>Tobacco Lobby</td>
<td>-.51</td>
<td>.615</td>
</tr>
<tr>
<td>Health Lobby</td>
<td>1.711</td>
<td>.100</td>
</tr>
</tbody>
</table>

R² = .765

Table 3 is the second step in analyzing policy diffusion, this time using rate of adoption with those states which have an AISB in place as the dependent variable. To calculate this, a filter was implemented to only look at states that registered policy = 1 on SPSS, resulting in an N of 36. Again, a high R² was observed, specifically .765, which gives a high amount of confidence. Surprisingly, this time the percentage of citizens with a local ordinance and citizen ideology were not statistically significant. This time municipality had a causal effect of .296 and citizen ideology was observed at .838. What was statistically significant, however, was the percentage of states already with an AISB in place when the case state adopted, along with a negative correlation with states that have had a history of AISB preemption laws in place. Again, unified Democrats and Republicans did not come up as statistically significant and were observed at .322 and .527 respectively. Surprisingly, the variables for Tobacco and Health Lobby both were not statistically significant, with the former coming in at .615 and the latter at .102. Percentage smokers and tobacco being produced in a state both were also statistically insignificant despite the percentage of state smokers being so strongly
related in the last model that it had to be removed. The percentage of smokers in a state was only .395 and production was .615. During this step of the evaluation of AISBs, regionalism percentage and history of preemption laws were statistically significant at the .05 level, with regionalism at .028 and preemption .047. Although the regionalism score was significant, the bordering score was not. This is noteworthy because it implies that the definition of state neighbors must be expanded to include more than those states which share a direct border.

Figure 1: A frequency table of state adoption rates

![Frequency Table of State Adoption Rates](image)

I included this figure to again reaffirm Volden’s hypothesis that a watershed moment exists where a policy will rapidly diffuse and gain national momentum causing late adopters, or “followers” such as Wisconsin, to adopt a specific policy.\(^{195}\) 2005-2009 appears to be that time period, as there was an explosion of diffusion that as of 2013 has appeared to have completely dissipated. Finally, it can be inferred through this observation that the states that have not yet adopted (the majority of them being in the south) will never do so given the current influencers both inside and around their state.

CONCLUSION

My initial hypotheses for my two-step approach to policy diffusion were only partially confirmed. For simple policy adoption, having a larger percentage of people already covered by local ordinances was statistically significant, but that was only when coupled with several other distinct variables. As mentioned above, placing the variable of historical smoker population percentages completely skewed the results. On top of that, the significance level was only .049. If any other southern state were to adopt a comprehensive AISB, I imagine that local pressure would no longer become statistically significant. I was also incorrect about having a multitude of underlying state

\(^{195}\) Volden 2006
features affecting adoption. All of my other variables attempting to control for government preference and capacity fell flat. I do know however (due to my Pearson’s r correlation) that there is a lot more going on with adoption of AISBs, as median income, being a southern state, and citizen ideology all were significant at the .01 level. Perhaps future researchers can construct more focused regressions to figure out what I am missing and account for the lost variables.

My evaluation of statewide AISB adoption rates yielded similar contradictions with my hypotheses and data. I was correct in my estimate that geographical proximity would play a key part in determining policy diffusion, but I expected a state sharing a direct border with an AISB state would be more significant than regionalism percentage. The opposite actually occurred, with regionalism having a significance rate of .028 and sharing a direct border only being .71. Again it appeared that state legislature makeup had no effect on policy diffusion at the state level. The only other factor that was actually significant at the .05 level was having a history of AISB preemption, which therefore likely threw off the municipality numbers because it was illegal for local governments to have them. Based on my Pearson’s r correlation between adoption rates and percentage of a state’s smoking population being .632, I strongly expected that result to shine through in my OLS regression. Seeing another lost variable, I ran another regression with just variables significant at the .1 level and nothing came back as statistically significant. This therefore reaffirmed Berry and Berry’s 1990 conclusion that for policy diffusion to be analyzed, there needs to be a multitude of independent variables. Comparing the two independent variables’ results show that many different forces are at play when policies diffuse, and ignoring a two-step procedure leaves out much of the story.

According to my frequency chart, policy diffusion for statewide comprehensive anti-indoor smoking bans appears to be at its end. Unfortunately for this study, federal influence on this policy did not begin until September 2013, with a national ad campaign from the Center for Disease Control (CDC) aimed at curbing tobacco usage called “Tips from Former Smokers.” The full impact of this new federal initiative has not been recorded on states that do not have a comprehensive AISB and it is likely that it might tip the scale toward adopting legislation. This research can therefore be interpreted as the result of state and local government, as the diffusion is appears to be largely completed. In the coming months when such federal spending can be coded, future researchers can use this document to provide insight on how to explain policy diffusion.

196 Center for Disease Control and Prevention 2013
REFERENCES

