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INTRODUCTION 

 Minor League Baseball's relationship to the major leagues makes its structure 

both complex and unique. Every minor league team is affiliated with a Major League 

Baseball (MLB) team which is responsible for hiring its players and coaches. There are 

also seven different levels of domestic minor league teams ascending from Short-Season 

Rookie to AAA. These classifications serve as preparation and extended tryouts for 

players to become major leaguers (Ozanian 2008). While my research focuses on the A, 

A-Advanced, AA, and AAA levels, the 30 MLB teams will, in most cases, have one 

affiliated team for at least six levels. The MLB's annual fifty-round player draft helps fill 

out all of these roster spots, where players will begin at some lower level and work their 

way up toward the major leagues. Because of the complexity of this system, it is not 

uncommon for the top draft picks to spend several years in the minor leagues before 

reaching their dream in the MLB. Although a player at any level can be called up to the 

major leagues, this usually happens at the AA and AAA levels. 

  All of this does not even touch on the fact that there are leagues outside of the 

United States, such as the AAA Mexican League, as well as completely unaffiliated, 

independent professional baseball leagues. Still, if all professional baseball teams are a 

special subset of economic firms, minor league affiliates are even more unique. Although 

the Atlanta Braves own nearly all of their affiliates, most minor league teams are 

privately owned by entities other than their affiliate. Despite this independence, minor 

league teams accrue huge benefits from having major league affiliates: the players and 

coaches are compensated by another firm, and their relationship to the MLB comes with 
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a certain amount of brand recognition (Smith 2013). Some other typical assumptions of 

firms do not apply at all to minor league teams (Bruggink and Zamparelli 1999). For 

example, while a manufacturing firm might look for a location already high in skilled 

labor, this is not much of a consideration for a team whose labor effectively comes to 

them. 

 Still, the fact remains that a minor league baseball team is an economic firm. In 

this case, the firm cares about its location largely because it relies on the market area 

around it to draw spectators to games. For this reason, choosing an optimal location is 

just as important for a baseball team as it is in any business venture. Unlike the MLB, 

which has experienced only one major relocation since 1998, minor league team 

locations change at a more rapid pace. The ultimate purpose of this research is twofold: 

first, to review the model created by Michael C. Davis (2006) and learn how accurately it 

predicted the changes in the minor league landscape from 2006-2012, and secondly, to 

use Davis' work as a starting point to model the ideal locations for minor league baseball 

teams using demographic, economic, and geographic data from several different sources. 

 The model will be similar to that of Davis: population, population change, per 

capita income, distance from the nearest professional baseball team, distance from the 

nearest major-league baseball team, and the number of a city's major-league professional 

teams in other sports will be tested as independent variables for their relationship to 

whether or not the city in question houses a minor league team at a given level. This 

research will focus on the most prominent levels of minor league baseball (AAA, AA, A-

Advanced, and A); short-season and unaffiliated leagues will not be analyzed. The 
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modification of some assumptions, use of Multinomial Logistic Regression instead of a 

Generalized Ordered Logit Model, and addition of new variables differentiate this 

research from that of Davis. 

 

LITERATURE REVIEW 

 There are several theories in spatial and urban economics which help us 

understand this specific case of team location. One of the simplest ways that a baseball 

team is related to economics is through spatial monopoly power. Due to league rules 

which respect the territory of previously established teams, a new ball club must stay at 

least eighteen miles away from the nearest team at any level (Siegfried 1981). Given 

these restrictions, each team is effectively granted a baseball monopoly for all consumers 

in the closest eighteen miles, and even that is the bare minimum. On the other hand, just 

as a manufacturing firm might reduce transportation costs by locating near a supplier, 

some teams are located geographically close to its affiliate. For example, the AAA 

affiliate of the Atlanta Braves is located just north of the city in Lawrenceville, GA. 

Although classical economic theory often assumes that distance is not a major factor in 

the cost of doing business, baseball franchises are examples of why such an assumption is 

unrealistic (Krugman 1991). Not only might a team look for spatial monopoly power or 

proximity to its affiliate, but the cost of relocating may be more than any benefits of a 

much better location (McCann 2001). 

 Since a professional baseball team is a firm in an economic sense, it is easy to 

assume that it exists solely in order to make profit. However, this is not necessarily true, 
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particularly in the case of past minor league teams. New behavioral theories of firms have 

helped us understand the alternative goals a firm might choose, as there may be 

competing objectives for each level of employees in the team ownership hierarchy 

(McCann 2001). While the owner may be most interested in making a profit, sales 

directors may be evaluated based on gate revenues, making that their personal goal. And, 

of course, each minor league team is affiliated with a major league club, whose main goal 

might be to prepare their future players. Hence, the assumption of pure profit 

maximization is misleading, particularly since in smaller markets the level of profits is 

hardly competitive with teams in larger areas (Scully 1995). That said, there is a growing 

emphasis on finance in the minor leagues since the “moneyball revolution” in the early 

2000s, and some well-run teams have proven to be quite profitable (Smith 2013).  

 One interesting point is that a minor league team may be interested most in 

maximizing revenue, which does not always happen at the point of profit maximization. 

In carrying out this strategy, the team would attain their maximum short run market share 

(McCann 1995). Since for those 176 teams that charge admission, over 90 minor league 

baseball teams relocated between 1991 and 2009, the short run may be the time period 

that matters most for some teams (Van Den Berg 2009). While gate receipts are not the 

only revenue source for these teams, all other sources are driven by bringing people in the 

gates. The real question, then, for the first scholars in this field, was modeling baseball 

demand by whether or not a location would draw enough fan attendance at games. 

 The research of the late 20th and early 21st centuries was instrumental in 

demonstrating the strong positive relationship between population and game attendance 
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(Brandvold & Pan 1997; Siegfried & Eisenberg 1980; Bruggink & Zamparelli 1999). 

Today we can authoritatively assert that a heavily populated area is more likely to result 

in more people coming through the gates. However, whether minor or major league teams 

were analyzed, there seemed to be inconsistent results for what else drives the demand 

for baseball games. Winning percentage (Brandvold & Pan 1997, Bradbury 2007), racial 

makeup of the area (Siegfried & Eisenberg 1980), and income level (Bruggink & 

Zamparelli 1999, Racher 2008) were all considered important factors in some studies, 

while others did not find a significant relationship with attendance. 

 While most attendance studies had focused on the major leagues, Rodney J. Paul's 

two 2008 studies analyzed many different factors to find which were the most and least 

important in causing fans to attend minor league games. More than twenty variables, 

including day of the week, population, per capita income, win percentage, free tickets, 

and various promotions, were measured to create an econometric regression model. What 

is striking about his research is that different leagues seem to have different factors 

driving attendance numbers. For example, his work on the Northwest League suggests 

that people are most likely to come to games when the team is winning and scoring runs 

at will. The only important promotion which significantly affected attendance was 

firework night. Attendance for teams of the South Atlantic League is also positively 

related to high-powered offensive baseball, and some of the best attended games in the 

SAL are accompanied by concerts or fireworks. However, in the South Atlantic League, 

minor league game attendance is not affected significantly by win percentage, and there 

was a surprisingly different negative relationship between attendance and per capita 
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income. Paul concluded that the total entertainment package mattered more than baseball, 

and that these were simply different tastes for baseball consumers in different league 

areas. The question of winning percentage's effect on attendance was compounded further 

when a fifteen-year data set showed a significant positive relationship (Gitter and Rhoads 

2008). This study also went on to discuss how minor league teams might act as 

substitutes for nearby major league affiliates. This was particularly true if the two teams 

were consistent winners, making their main conclusion even stronger. 

 Finding cities with a higher baseball demand seemed to be a key reason for the 

constant relocation of minor league baseball, but even assuming that there is a significant 

demand for baseball in a given city leaves out other important complications. Most of 

these stem from the fact that baseball teams require a stadium, and it is often the case that 

the public must want baseball in their city so much that they are able to convince city 

administration to finance a new stadium (Davis 2008). If done correctly, both the city and 

the team can enjoy an upward spiral effect of stadium quality, as “increased revenues 

from a new arena put a franchise in a better position to bid for quality players, resulting in 

a better team, which, in turn, draws more fans, resulting in more revenues, and so on” 

(Rascher 2004, 275). Still, the millions of dollars required to build a new stadium is not 

often an easy sell, adding a hefty cost barrier to an otherwise attractive location. 

 Even to this day, most sports economics research focuses on the effects that 

housing a sports team has on the local area. It is often assumed, for example, that having 

a professional sports team might be the cause behind an increase in population or income 

level. Instead of taking this approach, Michael C. Davis flipped it on its head to analyze 
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the reasoning behind minor league franchise location in the first place (2006). Could it be 

that the assumption is one of reverse causality, whereby population and income level 

make a city desirable as a minor league team's home? Instead of using attendance as his 

dependent variable, Davis examined the actual placement of minor league teams through 

a Generalized Ordered Logit Model and found that those cities with higher population, 

higher income level, and a greater distance from a major league team are more likely to 

house a minor league team (2006). He also used his model to predict which cities would 

become future homes of minor league teams, and which cities would not house a minor 

league team much longer.  

 Davis later built on that research by studying which other factors affect the 

location of any team at any level of professional baseball (Davis 2008). To say the least, 

there is a lot more to team location than choosing a city with a high population. For 

example, one other consideration is the previously mentioned league rule preventing new 

teams from locating within close proximity to another team. This factor looms large in 

New York, whose population houses two major league teams but could possibly support 

even more, particularly at a minor league level. Another important factor is the distance 

from a minor league team to its major league affiliate, although this seems to only be a 

factor at the higher levels. Beyond that, factors can include team winning percentage and 

the general disposition of the population to different entertainment options. In this way, 

Davis used his 2008 research to expand into a broader lens which included the ideas of 

scholars like Paul and Siegfried to again ask what brought people to games in the first 

place. Needless to say, Davis' work is the inspiration for this research, whereby the same 
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variables will be tested for the creation of a new model. 

 

EVALUATING DAVIS 

 At the end of his 2006 work, Davis suggested that future research could be 

dedicated to the movement of teams over the course of time to see whether or not there is 

conformity to his model. Included in his work were two helpful lists: one of the top ten 

cities without a team at a given level that the model predicts would house a team, and the 

bottom ten cities with a team at a given level that the model predicts would not house a 

team. For the purpose of comparison, these tables have been recreated and are included as 

 Tables A1 and A2 in the Appendix, with the overall city ranking in parentheses. I was 

able to obtain a more extensive listing of Davis' final rankings with his permission to 

determine whether his model correctly predicted the franchise moves made in the past six 

years. After further analysis, I learned that his methodologies required the predicted 

Table 1.       

2006-2012 MiLB Franchise Moves and Viability Rankings (Davis 2006) 

Class Original City Rank New City Rank Change Year 

LoA Battle Creek, MI 136 Midland, MI 236 -100 2007 

AAA Ottawa, CAN N/A Allentown, PA 32 N/A 2008 

AA Wichita, KS 3 Springdale, AR 144 -141 2008 

AAA Richmond, VA 23 Atlanta, GA (Lawrenceville) N/A N/A 2009 

AAA Tucson, AZ 35 Reno, NV 69 -34 2009 

HiA Vero Beach, FL 148 Bradenton, FL (Port Charlotte) 11 137 2009 

LoA Columbus, GA 1 Bowling Green, KY 314 -313 2009 

AA Norwich, CT 102 Richmond, VA 22 80 2010 

HiA Sarasota, FL 11 Bradenton, FL 11 0 2010 

AAA Portland, OR 1 Tucson, AZ 35 -34 2011 

AA Raleigh, NC (Zebulon) 55 Pensacola, FL 43 12 2012 

HiA Kinston, NC 413 Raleigh, NC (Zebulon) 140 273 2012 

      OVERALL SUM -120   

Note: The viability rankings were obtained from Michael C. Davis and are based on his model's predicted 
probabilities of housing a team at each given level. 
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probabilities of all cities as well, rather than just those without a team. With this data, I 

compiled Table 1, which lists all cities involved in franchise moves during those years 

and their viability ranking at the relevant level.1 Change refers to the net change in 

ranking due to the move, and was calculated by subtracting the new ranking from that of 

the first city. While I was able to move forward with this data, even having full disclosure 

did not allow for a perfect analysis due to methodological issues. One stems from the fact 

that some of the observed franchise moves are simply outside the scope of his research. 

For example, we do not know how to interpret the relocation of a AAA team in Ottawa to 

Allentown, PA simply because Canadian cities were not analyzed. Also, cities with MLB 

teams were not analyzed by Davis for a minor league presence, and the relocation of a 

Braves affiliate from Richmond, VA, to a part of the Atlanta area posed an issue here as 

well. 

 Despite these limitations, we do see that there is some variability when it comes 

to consistency with the model. Indeed, some of his “Bottom Ten” cities, which housed 

teams despite inconsistency with his model, saw their franchise move to a different 

location at some point from 2006-2012: Tucson, AZ;  Vero Beach, FL; Norwich, CT; and 

Kinston, NC. In these cases, three moved to a city with a higher ranking, although none 

were a “Top Ten” city. However, while the move from Tucson, AZ, was predicted by the 

model, its new location of Reno, NV was actually rated as even less-consistent with the 

model. Two years later, when Tucson received a new team, its previous home of Portland, 

OR, had actually been the highest-ranked city in Davis' AAA-model. The other franchise 

                                                 
1  While there were 90 relocations from 1991-2009, this includes all levels of Minor League Baseball. 

Our study is limited to the top four levels, where there is a lesser, albeit considerate, degree of change. 
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moves, with only a couple of exceptions, were often overwhelmingly in contrast with 

Davis' predicted probabilities. Cities like Columbus, GA and Wichita, KS echoed the 

story of Portland, with a very highly ranked city losing its team to another city with a 

much lower ranking. 

 One can also see that many of the moves were to cities with a ranking in the 

triple-digits, raising questions about the effectiveness of the model's predictive power. 

While Davis was effective in predicting that some locations would not house teams much 

longer, there is some very obvious inconsistency with his model. To be clear, this is not 

because Davis' research was poorly conducted or fundamentally flawed in its approach: it 

simply points to the fact that minor league baseball team location is an enigma that even 

the best scholars cannot predict with a great amount of accuracy. However, any new 

knowledge that we can gain from our own analysis can be helpful in making strides 

toward better predictions. Based on this conclusion, I attempt to construct a similar logit 

model which correlates independent variables, such as population, five-year population 

change, per capita income, and distance from a professional baseball team, to the 

presence of a minor league team in a city. Those cities which best fit the model, 

according to their model-predicted probabilities, will be designated as optimal team 

locations. 

 In doing so, I will also challenge a few of Davis' assumptions. Most notably, 

Davis chose to exclude the cities with major-league teams from consideration in his 

analysis in order to use distance from a major league team as a variable (2006, 257). 

While I understand this logic, especially when compounded by the population outliers 
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that New York and Los Angeles represent, doing so leaves out a considerable number of 

minor league teams. For example, the Los Angeles area houses five of the ten teams in 

the California League. Excluding these cities leaves us unable to say anything at all in 

situations like these, so I will include all such cities in my research. After all, if we know 

that some cities house both major and minor league teams, it would be interesting to 

know which cities seem most capable of doing so. Distance to a major league team will 

still be included as well, coded as “0” for those cities which have an MLB team. Other 

challenges will be brought up at a more appropriate time in the methodology and results 

sections. 

 

DATA & MEASURES 

 Defining the meaning of the term “optimal” is crucial to understanding the 

conclusions of this research. Like Davis, we are interested in looking into the factors that 

may or may not lie behind the choice of a particular city for a baseball team. These are 

examined through an inductive lens which takes the locations of teams in 2006-2012 as 

given. We assume that, by and large, many of the best opportunities for team locations are 

already housing a team, and, therefore, are looking for the data that can best predict 

similar locations. “Optimal,” then, does not imply that these are truly perfect locations for 

baseball teams, but rather describes cities that are consistent with the values of variables 

used to model the current landscape. Although there are clear drawbacks to this approach, 

it should allow us to pick up on any similar cities that do not currently have a minor 

league team. 
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 Population and per capita income data was obtained for all Metropolitan 

Statistical Areas (MSAs) in the United States from the Bureau of Economic Analysis. 

Five-year population change was calculated using this data and additionally converted 

into percentage change. As these all represent numerical values which begin at zero, they 

are classified as ratio variables. All data from 2006-2012 were collected into a 

spreadsheet organized by individual cities. Before moving on, it is important to remember 

that “city” for the purpose of this research, refers to an MSA as defined by the Office of 

Budget & Management. Just as Davis classified cities in his work, in the case that the 

MSA was part of a larger Combined Statistical Area (CSA), the Combined Statistical 

Area numbers were used. This is because a CSA is composed of at least two 

geographically adjacent Metropolitan Statistical Areas whose local economies have been 

judged to be interconnected.  

 Sometimes this resulted in several large cities being analyzed as one (ie. San Jose-

Oakland-San Francisco, CA), but the relationship between the cities justifies the CSA as 

the better unit of analysis for economic data. In several rare instances, teams were located 

in smaller Micropolitan Statistical Areas that were not part of a larger CSA. For these 

special cases, data was obtained for the respective Micropolitan Statistical Areas. 

Originally, the model was to include two other demographic variables for each city: racial 

makeup and age makeup. In short, these would have measured the percentage of each 

city's population identifying with a particular race or age grouping. Although this 

information is available through the U.S. Census Bureau for Metropolitan and 
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Micropolitan Statistical Areas, it is not easily convertible into usable data for CSAs.2 

Therefore, these variables were not used in the creation of this study's model.  

 Non-demographic variables were also used. The number of “major-league” 

professional sports teams in each city was obtained through the National Football League 

(NFL), National Basketball Association (NBA), National Hockey League (NHL), and 

Major League Soccer (MLS) websites. The summation of the number of teams in each 

city was then tested for use in the final model. Geographic variables were developed 

through Google MapsEngine to measure the shortest distance from each city to the 

closest city with a professional baseball team. The distance was measured in miles from 

the center of one city to the center of the other, and in the case of CSAs, the city listed 

first in the CSA name was used as the starting point. There were two different variables 

based on this method: the distance to the closest MLB team and the closest minor league 

team outside of the city being analyzed. For help in visualization, a map of the Minor 

League Baseball Landscape is provided as a figure at the beginning of the Appendix. 

 The individual locations of minor league baseball teams were obtained from the 

2006-2012 Baseball America Directories, annual publications which contain all contact 

information, addresses, affiliates, and historical data for each team in Minor League 

Baseball (MiLB) that year. This data was first collected into a spreadsheet organized once 

again by individual cities. The number of teams at each level of the minor leagues (AAA, 

AA, A-Advanced, A) were coded for each city. A final column added up the number of 

                                                 
2 One might assume that we could simply sum or average the numbers for all of the smaller areas 

that are part of a CSA, but this is not necessarily true. Especially in the case of Per Capita Income, 
values would need to be carefully weighted by the population of each area to generate accurate 
numbers. 
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teams at each level to determine the total number of minor league teams in each city. 

Collecting data for the locations of minor league teams meant that sometimes a city had 

more than one team within its Metropolitan or Combined Statistical Area. For this reason, 

these dependent variables were recoded into an ordinal measure of whether or not a city 

had at least one minor league team (0 = No team; 1 = At least one team). These ordinal 

measures were used as my dependent variable in Binomial Logistic Regression. Another, 

perhaps more important, dependent variable recorded the Highest Level at which a city 

had a minor league team (0 = No team; 1 = A; 2 = A-Advanced; 3 = AA; 4 = AAA). 

Thus, both Multinomial and Ordinal Regression used Highest Level as the dependent 

variable. 

 A separate data set was collected based on data almost entirely from the Baseball 

America Directories. Organized by team name, this data set recorded the classification, 

league, affiliate, address, and average attendance in the past year for each team. Google 

MapsEngine was used for one variable in this data set as well, using the same convention 

to measure the distance from the team's city to their MLB affiliate. In this case, the 

“team's city” was not the first major city listed in the MSA or CSA name, but the actual 

town where the team plays. For example, the New Orleans Voodoo's stadium is in 

Metairie, Louisiana, so distances were calculated from the center of Metairie rather than 

New Orleans. 

 The final variables were reported in different units: population was transformed 

into the natural logarithm of population because of the large amount of skew in the data 

from cities like New York and Los Angeles. The transformed variable, Log Population, 
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gave a much more normal and helpful representation of the data. Per Capita Income was 

transformed as well into the more normally distributed Log Per Capita Income. 

Numerical Population Change was reported in hundred-thousands and rounded to five 

decimal places, while the Percentage Population Change was coded as a decimal rounded 

to 3 decimal places. MLB Distance and Baseball Distance were reported in hundreds of 

miles and, therefore, rounded to two decimal places. The difference between MLB 

Distance and Baseball Distance is that MLB Distance gives the distance from the city to 

the closest major league team, while Baseball Distance gives the distance from the city to 

the closest minor league baseball team outside of the city being analyzed.3 For this 

reason, the values of these two variables could be very different for any city. The number 

of major-league professional sports teams in the city was simply coded as a whole 

number due to summation. 

   

HYPOTHESES 

 Based on initial suspicions and the work of previous scholars, I developed the 

following hypotheses. I believe that the model will predict that: 

  H1: A higher city population, in this specific case the natural logarithm of  

  population, will be associated with a higher probability of having a team at  

  all levels. 

  H2: A higher per capita income for a city, when transformed by the natural  

  logarithm, will be associated with a higher probability of having a team at all  

                                                 
3 Although cities in Alaska and Hawaii were included in this analysis, their values for these variables 

were capped at 1,000 miles. This allows us to capture the fact that they are basically limited to plane 
travel without having outliers so massive (greater than 2,000 miles) that they nullify our results. 
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  levels. 

  H3: A higher five-year population change, whether by percentage or raw  

  number, will be associated with a higher probability of having a team at all  

  levels. Only one of these measures will be used in the final model to avoid  

  multicollinearity. 

  H4: The presence of major-league professional sports teams in a city will be  

  associated with a higher probability of having a team at all levels. 

  H5: A greater distance from the closest professional baseball team will be  

  associated with a higher probability of having a team at all levels. 

  H6: A greater distance from an MLB team will be associated with a higher  

  probability of having a team at all levels except AAA. For AAA, the   

  relationship will be inversely proportional. 

  H7: All variables will show significance and be moderate in strength, but  

  there will not be multicollinearity between any variables other than   

  population and raw population change. 

 The justification for Hypothesis 1 relies on the assumption that population is the 

best measure of a city's market area. Like any other business, a baseball team will choose 

to locate in a high population area in hopes of bringing more fans to each game. 

Hypothesis 2 assumes that cities with a higher per capita income will have the disposable 

income necessary to attend a minor league baseball game. Although tickets to these 

games hardly command a high price compared to a major league game, minor league 

baseball is a recreational activity. Despite their affordability, baseball is not a necessity 
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and should show an elastic demand among the general public. The third hypothesis is one 

of my own additions to the Davis model, the theory being that population change over the 

last five years helps show the trend of whether a city is growing or deteriorating. Thus, a 

minor league team might locate in a smaller population area if there is enough positive 

population change to show evidence of a promising future. Although these two 

population change variables will be measuring the same concept relevant to the model, I 

think it is important to test both to see which is the better indicator of population change. 

Hypothesis 4 is in regards to major-league sports teams other than baseball, that is, teams 

in the NFL, NBA, NHL, and MLS to round out the top five American sports. The theory 

behind this is that seeing another professional team locate in a city may serve a purpose 

in signaling it as a location which already has some sports popularity.  

 Concerning the distance to the closest professional baseball team, my fifth 

hypothesis assumes that there is some spatial monopoly power that a professional 

baseball team can gain by locating farther away from the next-closest team. It is 

important to note again that only teams from the AAA to A classifications are being 

analyzed. Thus, while there may be some teams at lower levels that are technically the 

“closest professional team,” they will not be considered. Similarly, the sixth hypothesis, 

for the most part, assumes that there is some spatial monopoly power to be gained. This 

would reduce their competition for the highest level of baseball, resulting in potential for 

a greater market share. The AAA-level is a special case, however, in that it is only one 

level below the major leagues. Therefore, locating close to a major league team, 

potentially its MLB affiliate, would create an avenue for positive externalities. For 

17

Conley: Top of the Order: Modeling the Optimal Locations of MiLB Teams

Published by Digital Commons @ IWU, 2015



 

example, injuries are quite common in baseball, and often require the injured player to 

have a temporary rehabilitation assignment to a lower level. The team will pick up a 

replacement player from a level below to fill out their roster as well, so by locating near 

each other, the AAA and MLB teams would be able to do this more easily and efficiently.  

 All of this leads me to my seventh and final hypothesis regarding the relationships 

between the independent variables. If scholars like Davis used per capita income, 

population, and distance variables together to build their past models, I expect to see a 

moderate relationship between them. Although the presence of other professional teams is 

my addition, I do not expect the relationship to resemble population too closely, and 

expect its bivariate relationships to be moderate as well. As for the two measures of 

population change, I believe that the numerical measure will too closely resemble the 

population variable, resulting in a very strong, collinear relationship. On the other hand, I 

predict that the percentage change in population will create a level playing field for cities 

of all sizes, making it the better measure of the two. As it should be measuring something 

different from population and per capita income, I expect their bivariate relationships to 

be moderate. As a reminder, it has already been stated that we hypothesize that using both 

measures of population change would result in multicollinearity. 

 

METHODS & ANALYSIS 

 Using SPSS, the independent variables were tested using several different 

methods. Initially, Pearson's R was used to test the relationships between pairs of 

variables. This was done for two reasons: first, to confirm that the measures were at least 
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somewhat related, and secondly, to test for multicollinearity between variables. Ideally, if 

these variables are compatible for use in creating a viability index, the relationships 

between the variables should be significant. However, if the relationship is too strong, the 

possibility of multicollinearity means that both probably should not be included in the 

index. 

 Davis used a Generalized Ordered Logit Model (GOLM), which is a form of 

logistic regression to produce predicted probabilities of a city having a team at a given 

level. Whereas the more common linear regression model is helpful for predicting scale 

dependent variables with a large range, logistic regression models categorical data and 

finds its predictive power in the logarithm. Linear regression is more powerful when used 

with continuous dependent variables, such as population. However, our analysis has only 

a few different dependent variable categories: even when we are analyzing all levels 

together, there are only five levels from AAA to having no team at all. In this case, it 

seems clear that logistic regression, also known as a logit model, is the better choice. 

Since there is some rank-order behind the levels of minor league baseball classifications, 

we begin with the assumption that our dependent variable is ordered. This is in contrast to 

a dependent variable such as hair color, which clearly has no order. Generalization is 

more complex to explain, but basically allows for more flexibility in modeling through 

the relaxation of some assumptions that an ordinal logistic regression requires, such as 

the proportional odds assumption we will discuss later. 

 For several reasons, this analysis will not use a GOLM. Perhaps the most 

important reason is that I am personally much less familiar with a GOLM than I am other 
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techniques, and do not believe that I am in a position to replicate Davis' methodology. At 

the same time, the new data set that I am analyzing has undergone several changes in 

makeup, including updated geographic CSA definitions from the U.S. Office of the 

Budget & Management. Also, the years from 2006-2012 are being analyzed together, 

making this study longitudinal in contrast to Davis, whose analysis was cross-sectional. 

Furthermore, given that the changes in minor league team location that have occurred in 

the last several years were only sometimes consistent with Davis' model, as we have 

already seen, it may be that his GOLM is not the best way to model the locations of 

minor league baseball teams after all. Therefore, our goal is not as much about replication 

as it is about broadening the usefulness of our results. 

All of these factors suggest that it might be smarter to use several other regression 

methods to find out which best suits our data. Over the course of the analysis, three 

different forms of logistic regression were used: Binary, Ordinal, and Multinomial. While 

we will explain the reasons for the different models later, it makes sense to first cover the 

similarities of all three of these logit models. Again, unlike a simple regression, the line-

of-best-fit will not be linear, but based on the shape of the logarithm function. The model 

produces an equation based on an intercept and coefficients for each variable, 

corresponding to the log-odds of being in a category based on the exponential function. 

In reading the model output, the sign of our model coefficients, B, represent a direct or 

inverse relationship as intuition would tell us. For each one-unit change in a variable, the 

log-odds will change by the value of B. Because the variables are measured in different 

units, we cannot say anything about the relative strengths of different values for B until 
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they are converted into actual odds ratios, denoted as Exp(B).  

 It is important to note that a logit model produces odds ratios here, which are 

different from probabilities. For this reason, a higher value for Exp(B) represents more 

strength, but an odds ratio that is two-times the size of another is not twice as strong. As 

in other regression models, variable significance is measured by our p-value (p>.05 is 

considered insignificant) based on the Wald chi-square test. Finally, although linear 

regression uses r-square values as a measure of the model's goodness of fit, logistic 

regression has no perfect r-square measure. Several “pseudo r-squares” have been 

developed in response to this, and we will report the Cox & Snell and Nagelkerke values 

here. Low values for these statistics are common, and even though Nagelkerke is built to 

give a value from 0 to 1 (unlike Cox & Snell), it is still not very comparable in 

interpretation to conventional r-square. 

 The mathematics behind this can be seen if we let α represent the intercept of the 

model, βi represent the coefficients for each variable, and xi represent our variables for 

some integer, i. If p is the probability for x, then the model's log-odds for n variables can 

be represented by: 

 

 

We would then calculate the actual odds ratios for a city having a team at the level in 

question, represented by the expression: 

 

However, because odds ratios can cause confusion in interpretation, all odds ratios were 

( )
( ) nn21 Xβ++Xβ+Xβ+α=
xp

xp
...

1
log 21

−
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then converted to probabilities which predict the chance of a city having a team. The 

calculation of the predicted probabilities in some forms of logistic regression is complex 

and will be discussed shortly, but for a Binomial Logistic Regression, predicted 

probabilities are simply expressed as follows:  

 

 

 Furthermore, the three types of regression used in our model are all different 

despite their parental relationship. The Binary Logistic Regression model uses a 

dependent variable which has only two possibilities. In our case, a value of “0” was used 

to represent the absence of a team, and a value of “1” was coded if the city has at least 

one team at the level being analyzed, so our independent variables were used to create a 

non-linear line of best fit between the values of 0 and 1. Naturally, this was used for our 

analysis of whether a city had a team at any minor league level. Ordinal Logit modeling 

is based on several assumptions, including the premise that there is order to the categories 

of our dependent variable. As Davis suggests, this can be assumed because of the inherent 

hierarchy of minor league baseball where players are promoted from A up the ladder 

toward AAA, and then to the major leagues. This leads to the proportional odds 

assumption that all independent variables should have the same effect in terms of its log-

odds at all levels. Finally, Multinomial Logistic Regression expands upon the binomial 

case in allowing more than 2 possibilities for the dependent variable. In contrast to an 

ordinal model, multinomial categories are based on the assumption that each should be 

treated separately. Perhaps, like hair color, no category is better or worse than any other. 
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For this reason, each category of the model is compared to a reference category. In our 

case, category 0 (No Team) is our reference category. 

 Multinomial predicted probabilities are a bit more complicated, but are based off 

of the same logic as binomial. Again, the basic odds ratio for a binomial regression is 

below. 

 

We will call this particular equation eA. Suppose that we have four different values for 

coefficients of each variable based on the different categories, denoted  eA, eB, eC, and eD. 

Then the predicted probability of a city having a team in category A, out of all the other 

options, would then be: 

 

 These models will provide output for each individual level of Minor League 

Baseball as well as the overall presence of a minor league team at any level. The theory 

behind this is that, as we have seen from previous research, the effects of a variable at one 

level may not be the same either in significance or direction for another. The predicted 

probabilities given through these models will serve as our viability indexes, and cities 

will then be ranked at each level in descending magnitude of probability. 

 

RESULTS  

Descriptives & Initial Variable Testing 

 The univariate analyses for our dependent variables are provided in Tables 2, 3, 

and 4. Again, all years from 2006-2012 were analyzed, so while there are a total of 2030 

DCBA

A

e+e+e+e+

e

1
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cities for all years combined, 290 distinct cities were included in this study. Table 2 

categorizes all cities by the number of teams at each level. The MLB is included as well 

for comparison purposes, as well as a breakdown of cities which have a team at any level. 

We should not be surprised that the vast majority of cities do not have a minor league 

team, especially considering there are only 120 MiLB teams being analyzed for each 

year. Also, the only classification which has no cities housing more than one team is  

AAA. That said, the only level where there is a very pronounced effect of cities with  

more than one team is A-Advanced, where Greater Los Angeles houses as many as five  

teams in a given year. 

 Table 3 resolves the issue of multiple teams locating in the same city by creating a 

dummy variable of whether or not a city has at least one team at a given level. Once 

again, numbers for the MLB and Any Level are included. Most of the conclusions we can 

draw from it are similar to those previously mentioned, such as the low number of cities 

with a team. The Binomial regression will use this dichotomous measure of whether or 

not a city has at least one team as its dependent variable. In Table 4, the issue of multiple  

 

 

 

 

 

 

 

Table 3.

Number of Cities with at Least One Team at a Given Level

Teams MLB Any MiLB AAA AA A-Advanced A

0 1862 91.7% 1343 66.2% 1822 89.8% 1825 89.9% 1895 93.3% 1823 89.8%

At Least 1 168 8.3% 687 33.8% 208 10.2% 205 10.1% 135 6.7% 207 10.2%

TOTAL 2030 100.0% 2030 100.0% 2030 100.0% 2030 100.0% 2030 100.0% 2030 100.0%

Table 2.

Number of Cities with a Given number of teams at a Given Level

Teams MLB Any Level AAA AA A-Advanced A

0 1862 91.7% 1343 66.2% 1822 89.8% 1825 89.9% 1895 93.3% 1823 89.8%

1 133 6.6% 595 29.3% 208 10.2% 201 9.9% 97 4.8% 206 10.1%

2 35 1.7% 59 2.9% 4 0.2% 17 0.8% 1 0.0%

3 17 0.8% 12 0.6%

4 9 0.4% 2 0.1%

5 7 0.3% 7 0.3%

TOTAL 2030 100.0% 2030 100.0% 2030 100.0% 2030 100.0% 2030 100.0% 2030 100.0%
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teams is resolved in a different way: by coding only the highest level at which a city has a  

team. In this case, only the levels from A to AAA are included. This Highest Level data 

will be our dependent variable for Multinomial and Ordinal Logistic Regression models. 

The percentage of cities without a team is the same as that for Any MiLB level in Table 3. 

For the other levels, we see the highest percentage of cities have AAA as their highest  

level, with A and AA in the same ballpark. The relatively low number for A-Advanced is 

attributed to the large number of cities with more than one team at that level, just as we  

saw in Table 2. Another finding is that a higher classification does not always have more 

individual cities with teams than the classification below it. 

 Descriptive statistics and frequencies for our independent variables are provided 

in Tables 5 & 6. Only one of our covariates, the number of major-league professional 

teams in a city (ProTeams), was discrete. Table 5 provides its frequencies. Here we see 

that while most cities have no major league teams in any of these sports, most that do 

have only one or two major league teams in all of these sports combined. We also see that 

there are fewer cities with four major league teams than three, still fewer with five major  

Table 4.    

Frequencies for Highest Level 

Highest Level Frequency Percent 
Cumulative 

Percent 

No Team 1343 66.2 66.2 

A 174 8.6 74.7 

A-Advanced 118 5.8 80.5 

AA 187 9.2 89.8 

AAA 208 10.2 100.0 

Total 2030 100.0   
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league teams, and so on. This pattern continues down until only the seven Los Angeles 

and New York City entries remain as having six and eight teams, respectively, at the 

highest level.4 As the rest of my independent variables are continuous, the descriptive 

statistics of the variables tested in the model are in Table 6. 

 As I have mentioned, some variables were transformed to better reflect a normal  

distribution and account for outliers. A full listing of descriptive statistics, including 

variables before transformations, can be found in the Appendix as Table A3. Population   

Change is reported in hundred-thousands, with MLB Distance and Baseball Distance 

being reported in hundreds of miles. Even with the transformations, we can still see some 

skew in the data, and those variables which were not transformed have mean values that 

are often much greater than their medians.5 The mean value for Log Population 

corresponds to roughly 375,000 people, and the mean for Log Per Capita Income to 

                                                 
4 Since 2006-2012 was analyzed for each of the 230 cities, there will be seven entries for each city. 
5 One might wonder why these variables would not be transformed to more normal distributions as well. 

While this is a valid question, the simplest answer is that transformations are only possible when the all 
values are positive for a variable. Although this condition is met for Baseball Distance, the 
transformation showed no significance at all. 

Table 5.

Number of Professional Sports Teams in a City

Teams Number of Cities Percentage

0 1751 86.3%

1 90 4.4%

2 86 4.2%

3 51 2.5%

4 26 1.3%

5 12 0.6%

6 7 0.3%

8 7 0.3%

TOTAL 2030 100.0%

Note: This refers to the teams in the highest professional level in sports other than 

baseball. NFL, NBA, NHL, and MLS teams are all included.

26

Undergraduate Economic Review, Vol. 11 [2015], Iss. 1, Art. 9

https://digitalcommons.iwu.edu/uer/vol11/iss1/9



 

roughly $36,000. Skewness and Kurtosis are two measures of the level of skew in the 

data, which helps explain why our question is so hard for researchers to answer. In a 

perfectly normal distribution, Skewness should be close to 0 and Kurtosis close to 3.0, 

but it is not surprising to see that some of our variables are not normally distributed. 

However, by using the Quintile values, we are able to see how large the spread is for 

some variables. For example, although the eightieth percentile for MLB Distance and 

Baseball Distance have values less than 3.0, the maximum value in both cases is 10.00 

(or 1,000 miles). This helps us see the effect of outliers in our data set, usually in Alaska 

or Hawaii. 

 Pearson's r was used to test the relationships between pairs of variables, with the 

results in Table 7. Only in three cases is the bivariate relationship insignificant, and they 

involve Population Change, Percent Population Change, ProTeams, and Baseball 

Distance. We might not expect some of these to be related anyway, particularly Baseball 

Distance and ProTeams (r=-.031, p>.05) or Baseball Distance and Population Change 

(r=.033, p>.05). On the other hand, the lack of a significant relationship between Percent 

Population Change and ProTeams is a bit surprising (r=.017, p>.05). One would expect 

that the percentage of population growth would at least have some effect on the locations 

of the highest level of professional sports teams, particularly given the high correlation 

between ProTeams and numerical Population Change (r=.717, p<.001). For the most part, 

all other variables show significance even if their relationship is too weak to be 

meaningful (r<.20).There appears to be a strong relationship between Log Population and 

Population Change (r=.660, p<.05) and a moderate one between Log Population and Log 
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Table 6.

Descriptive Statistics

N 2030 2030 2030 2030 2030 2030

Mean 12.8389 0.45048 5.0385 10.4899 1.9327 1.2475

Std. Error of Mean 0.0264 0.02286 0.1064 0.0033 0.0331 0.0294

Median 12.5378 0.11918 4.5251 10.4808 1.6400 0.8900

Std. Deviation 1.1901 1.03009 4.7958 0.1483 1.4935 1.3233

Skewness 0.8506 3.86224 0.7644 0.1759 2.386 4.562

0.3797 17.76095 2.5127 0.8211 9.840 25.287

Range 6.5043 10.84017 52.6515 1.0885 10.00 9.82

Minimum 10.4624 -2.84653 -18.4928 9.9683 0.00 0.18

Maximum 16.9666 7.99364 34.1586 11.0568 10.00 10.00

Percentiles 20 11.7897 0.02228 1.1329 10.3710 0.8940 0.6000

40 12.3140 0.08161 3.4040 10.4489 1.3700 0.7700

60 12.9249 0.17341 5.5373 10.5196 2.0100 1.0200

80 13.8320 0.52068 8.6092 10.6103 2.7400 1.5300

Log 

Population

Population 

Change

Percent 

Population 

Change

Log Per  

Capita 

Income

MLB 

Distance

Baseball 

Distance

Kurtosis
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Table 7.

Pearson's r Correlations for Independent Variables

MLB Distance

1

1 .033

1 .017

1

MLB Distance
1

.033 1 -.019

.017 -.019 1

Log 

Population

Population 

Change

Percent 

Population 

Change

Log 

Per..Capita 

Income

Baseball 

Distance ProTeams

Log 

Population
.660*** .152*** .419*** -.310*** -.058** .710***

Population 

Change
.660*** .381*** .296*** -.215*** .717***

Percent 

Population 

Change

.152*** .381*** -.051* .197*** .162***

Log 

Per..Capita 

Income
.419*** .296*** -.051* -.150*** .153*** .431***

-.310*** -.215*** .197*** -.150*** .722*** -.314***

Baseball 

Distance
-.058** .162*** .153*** .722***

ProTeams
.710*** .717*** .431*** -.314***

***. Correlation is significant at the 0.001 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Per Capita Income (r=.419, p<.05). This is good news because, according to previous 

studies, population should be the major factor in choosing a team location. Also, the 

relationship between Log Population and numerical Population Change does not appear 

to result in multicollinearity, so we are able to reject the last stipulation of our seventh 

hypothesis. 

 Last, we know that a value greater than 0.8 shows a very strong relationship and 

likely multicollinearity. Although some relationships are close, nothing immediately 

strikes us as higher than that threshold.6 However, intuition tells us that we should not use 

Percentage Population Change and numerical Population Change in the same model since 

our hypothesis calls for them to be used as a measure of the same aspect of our model. 

Reviewing the strength of the association factors shows that Population Change has 

                                                 
6 Relationships with a value of 0.6 or greater were tested further using the Variance Inflation Factor 

(VIF). All VIF values were lower than the standard multicollinearity threshold of 5.0, and in fact 
lower than 4.0. 

 

29

Conley: Top of the Order: Modeling the Optimal Locations of MiLB Teams

Published by Digital Commons @ IWU, 2015



Conley 30 

stronger relationships than Percentage Change in almost every case. Also, remember that 

we were not sure what to make of the insignificant relationship between Percentage 

Change and ProTeams. Therefore, it seems more rational to use Population Change in the 

case that both show significance in our final model. 

 The reverse situation is also true: MLB Distance and Baseball Distance have the 

highest Pearson's r value (r=.722, p<.001), suggesting a higher likelihood of 

multicollinearity. However, these variables were designed with different dimensions of 

the model in mind: MLB Distance is hypothesized to reflect distance to a potential 

affiliate, while Baseball Distance might explain a city's level of spatial monopoly power 

in the baseball industry. This fact, combined with the difference in strengths or 

relationships with other variables and the r-value below our threshold, justifies the use of 

both variables in our final model. 

 

Logistic Regression 

 Binomial logistic regression was used to create a model which predicts whether a 

city has at least one team at any MiLB level. At the beginning, each variable was tested 

stepwise, being kept in the model if it showed significance, and being discarded if there 

was none (p>.05). Our base model predicts that no cities have a minor league team, and 

gives us only an intercept (α = -.670). While this seems justifiably crude, it is important 

to note that the null model correctly predicts that 66.2% of cities have no team, so this is 

the baseline we are trying to improve upon. All variables will be added to this model 

stepwise, changing the intercept based on the line-of-best-fit. In all cases, the intercept 
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was significant based on the Wald chi square test (p<.05), and there was one degree of 

freedom for all variables. At this point, we will first report the Wald significance for each 

variable, as the values of B will change when the final model is produced. 

 Log Population showed significance (Wald=438.483, p<.001) as we would 

expect, with a positive coefficient (B=1.277) that shows a direct relationship. ProTeams 

was then added to the model, again showing significance (Wald=111.724, p<.001). The 

coefficient was negative, however, suggesting that having a major league sports team in a 

city is associated with a lower likelihood of having a MiLB team for all levels combined 

(B=-.818). With Log Population and ProTeams included in our model, Log Per Capita 

Income was insignificant when added (Wald=1.930, p>.05), and is therefore discarded for 

this model. Similarly, adding Population Change was clearly insignificant according to 

our Wald test (Wald=.001, p>.05), with p=.973. In its place, Percentage Population 

Change was tested instead. Although the p-value for this variable was much lower 

(p=.084), it was still insignificant according to our Wald test (Wald=2.986, p>.05).  

 After all of this, we are left with only 2 variables in our model so far: Log 

Population and ProTeams. Adding MLB Distance and Baseball Distance into the model 

showed significance at the highest level for both variables (p<.001). The final binomial 

logistic regression model for a city having at least one team at any level is provided in 

Table 8. The positive coefficient of MLB Distance (B=.285) means that a greater distance 

from an MLB team corresponds to a higher likelihood of having a minor league team, 

and we will try to explain this later. Baseball Distance had a negative parameter 

coefficient (B = -.638), with the inverse relationship meaning that a greater distance from 
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Table 8.

Binomial Logistic Regression: Any Level

B S.E. Wald df Sig. Exp(B)

Log Population 1.914*** .092 436.024 1 .000 6.777

ProTeams -0.767*** .081 90.283 1 .000 .464

MLB Distance 0.285*** .066 18.887 1 .000 1.330

Baseball Distance -0.638*** .093 46.860 1 .000 .528

Constant -25.177*** 1.197 442.512 1 .000 .000

***. All coefficients are significant at the 0.001 level (2-tailed).

any professional baseball team leads to a lower likelihood of having a professional 

baseball team.  

 The opposite effects of MLB Distance and Baseball Distance support the idea that 

they are representing different dimensions of the model, even though we hypothesized 

that greater distance would correspond to a higher likelihood because of spatial monopoly 

power. Pseduo r square values are not typically large, and in our case the Cox & Snell r 

square was .344 and the Nagelkerke r square was .476. Table 9 provides a classification 

table breaking down the accuracy of our model for having a team at any level. The cut 

point is set at 0.5, meaning that a predicted probability of 0.5 or higher will be predicted 

to have a team at some level. Using this model, we correctly predict the status of 82.4% 

of the cities analyzed, much better than the base null model at 66.2%. 

  There are some other interesting findings in the final model. Just as our literature 

review showed, Log Population has a huge effect on the probability of a city having a 

minor league team, as its odds ratio is given as 6.777. The coefficient, B, is positive and 

the variable still shows significance (Wald = 436.024, p<.001). The coefficient for 

ProTeams is still significantly negative (Wald = 90.283, p<.001), with a much lower odds 

ratio of 0.464 in comparison to Log Population. MLB Distance has a positive coefficient 
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Table 9.

Classification Table: Binomial Logistic Regression

Cox & Snell 0.344 Predicted

Nagelkerke 0.476 Any Level

N 2030 No Team At Least 1

Observed Any Level No Team 1180 163 87.9

At Least 1 195 492 71.6

Overall Percentage 82.4

Percentage 

Correct

Variables included in the model are Log Population, ProTeams, Baseball Distance, and MLB 

Distance. The cut value is .500.

and its odds ratio is actually the second largest (Exp(B)=1.330), while Baseball Distance 

has a negative coefficient that fails to support our hypothesis. The constant, or intercept, 

is significant at the highest level as well (B = -25.177, Wald = 442.512, p<.001). To go 

beyond the classification table, predicted probabilities for each city in the data set were 

calculated for use in ranking the cities, which will be used in the Discussion section. 

 Now that we have the probabilities for having a minor league team at any level, 

we will begin using an Ordinal Regression model. This method can be used to create a 

model for all the different levels simultaneously. Our dependent variable here is Highest 

Level, which reports the highest classification from A to AAA where a given city has a 

team. Again, the variables were tested stepwise, being included in the model only if they 

showed significance in at least one category. We begin with the model for Log Population 

only, represented in Table 10, which should have the strongest effect on our dependent 

variable. The thresholds, when negated, represent the constants for each of the models, 

and they rise as expected for each of the levels. All intercepts are significant at the 

highest level according to their respective Wald tests, and so is Log Population (p<.001). 

With just this amount of information, we would typically begin analyzing the coefficients  
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and explaining what exactly they mean. However, it is more important that we feel secure 

in our choice of modeling technique, so we will put this off for a moment. 

 An ordinal regression assumes that there is order behind the categorization, and 

we have already established why we believe this to be true. Next we need to test the 

proportional odds assumption. Ordinal Logit Modeling gives us only one value for the 

slope coefficient of Log Population, assuming that the difference between levels lies only 

in our threshold intercepts. This would then mean that the slope coefficients would show 

no difference between levels. If that is true, then the Test for Parallel Lines (TPL) should 

support this null hypothesis. As we can see in Table 11, the significance level of  

.004 shows that there is significant difference between the slope coefficients (χ2=13.590, 

p<.01). While previously a significant p-value led us to include a variable in the model, 

this time that calls into question one of our assumptions that allows us to use Ordinal 

Table 10.

Ordinal Logistic Regression

Estimate Std. Error Wald

95% Confidence Interval

Lower Bound Upper Bound

No Team 15.475*** .629 605.665 1 .000 14.242 16.707

A 16.071*** .638 635.163 1 .000 14.821 17.321

A-Advanced 16.537*** .645 657.299 1 .000 15.273 17.802

AA 17.49*** .661 700.754 1 .000 16.195 18.785

Location Log Population 1.142*** .048 572.314 1 .000 1.049 1.236

df Sig.

Threshold:       

Highest Level 

Link function: Logit.

Table 11.

Test of Parallel Lines

Model Chi-Square

3747.325

General 3733.735 13.590 3 .004

-2 Log 

Likelihood df Sig.

Null 

Hypothesis

The null hypothesis states that the location parameters (slope coefficients) 

are the same across response categories.

a. Link function: Logit.
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Regression. We reject the null hypothesis of the TPL, that the slope coefficients are the 

same, and are left thinking that a higher level of baseball is not quite as ordered as we 

thought in terms of the factors behind team location. Therefore, despite its significance in 

the Ordinal Logit model, Log Population violates one of the principal assumptions of the 

model and cannot be used for drawing any meaningful conclusions.7 For this reason, we 

do not need to know any more about the coefficients, pseudo r-squares, or inner-workings 

of the model, as our variables do not meet the assumptions necessary to use it.  

 Even if it would have initially gone against our intuition, we now know that we 

must treat the classifications as completely separate and unordered through Multinomial 

Regression.8 The proportional odds violation makes sense with a bit more thought, 

though, as having a team at a higher level does not always rule out the possibility of 

having another team at a different level. That said, Multinomial Regression requires the 

categories to be mutually exclusive, which we have taken care of by coding only the 

highest level at which a city has a team. This time, the separate models will be calculated 

for the different calculations while allowing for different values of the slope coefficients 

within each category. The category 0, representing cities which have no team, served as 

our reference category to which all other category models are compared. Variables were 

once again tested stepwise based on significance for at least one category.  

 The stepwise process yielded significance for at least one classification for all 

variables, so we will not need to discuss as many details as we did in the binomial model. 

                                                 
7 Although they are not reported, other variables were tested as well with the same overall TPL results.  
8 Again, a GOLM is another possible way to deal with significance during the TPL. Davis himself says 

in an endnote that a multinomial model was created along with a GOLM in his research because 
Multinomial is even more flexible (Davis 2006, 264). For this reason, greater flexibility in our 
longitudinal data set may be exactly what we need to improve on his results. 
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Before we skip to the final model, though, it is important to note two things. Recall that, 

because the testing for multicollinearity supported our idea that Baseball Distance and 

MLB Distance seem to be measuring different dimensions of the model, both were used 

in the final model. Also, despite both Population Change and Percentage Population 

Change showing significance, we know that we cannot use both in the model for the 

reasons stated earlier. Therefore, because Population Change has stronger, more reliable 

relationships with our other independent variables, it will be chosen over Percentage 

Population Change for inclusion in the model. This model is reproduced in Table 12. 

Even though not all variables are significant in every classification, they are kept because 

they are significant in at least one classification. Because it is a Multinomial model, 

which is more complex, we should not worry if the model for one classification is using 

an insignificant variable or two. After all, insignificant variables should have no 

noticeable effect on our results 

 In the final model, all of the intercepts were significant, negative and seemingly 

substantial with one exception: the A-Advanced model's intercept was not only smaller 

(B = -12.3565), but also insignificant (Wald=1.561, p>.05). Log Population was 

significant at the highest level (p<.001) with a positive coefficient for all classifications. 

This is as expected, supporting the claim that higher population is associated with a 

higher likelihood of having a minor league team at any level. Although most values for 

the coefficient (B) of Log Population were between 1.5 and 2.0, the coefficient was much 

larger at the AAA level (B=3.233). This also corresponded to a jump in the odds ratio of 

Log Population from 4.5 to 6.2 to a much larger value for AAA (Exp(B)=25.345). 
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ProTeams was also significant at the highest level (p<.001), but with negative B 

coefficients hovering around -1.00 for all classifications. 

 Log Per Capita Income was only significant at the AA level (B=3.032, 

Wald=17.380, p<.001) and the AAA level (B=3.579, Wald=19.880, p<.001). In both 

cases the odds ratio for Log Per Capita Income is even higher than that of population, 

which is somewhat surprising. The positive coefficients suggest a direct relationship in 

which a higher income is associated with a higher likelihood of housing a team at the AA 

and AAA levels. Population Change was only significant for the A-Advanced level 

(B=.555, Wald=17.402, p<.001), with a positive coefficient and an unsurprising direct 

effect on the dependent variable. Baseball Distance was significant at the highest level 

(p<.001) for all classifications with a range of coefficients (-3.3 < B < -0.5). The 

coefficient was consistently negative, meaning that the farther away a city is from any 

professional baseball team, the less likely it is to house a minor league team. On the other 

hand, MLB Distance was negative but insignificant at the A level (p>.05), but had a 

consistent positive coefficient for the other classifications which showed significance. Its 

strongest effect was at the AAA level (Exp(B)=2.599). For these variables, there may 

have been times when the sign of the coefficient was different for one level than another, 

but in those cases the effect was insignificant. The pseudo r squares for the model were 

higher than the binomial model as well (Cox & Snell=.450, Nagelkerke=.506).  

 Finally, for the purpose of comparison with a null model, we include a 

classification table as Table 13. In short, the predicted classifications for each city are 

based on the classification with the highest predicted probability of the five different 
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Lower Bound Upper Bound

Intercept -24.187** 7.546 10.275 1 .001

Log Population 1.509*** .139 118.600 1 .000 4.522 3.447 5.933

Log Per Capita Income 0.411 .733 .315 1 .575 1.509 .358 6.349

Population Change -0.301 .201 2.252 1 .133 .740 .499 1.097

Baseball Distance -0.936*** .216 18.692 1 .000 .392 .257 .600

MLB Distance -0.13 .112 1.362 1 .243 .878 .705 1.093

ProTeams -1.278*** .201 40.224 1 .000 .279 .188 .414

Intercept -12.365 9.897 1.561 1 .212

Log Population 1.817*** .179 102.586 1 .000 6.153 4.329 8.746

Log Per Capita Income -1.095 .956 1.314 1 .252 .334 .051 2.176

Population Change 0.555*** .133 17.402 1 .000 1.741 1.342 2.260

Baseball Distance -3.334*** .379 77.293 1 .000 .036 .017 .075

MLB Distance 0.277* .134 4.281 1 .039 1.319 1.015 1.715

ProTeams -0.799*** .156 26.295 1 .000 .450 .331 .610

Intercept -56.943*** 7.734 54.215 1 .000

Log Population 1.794*** .141 163.072 1 .000 6.016 4.568 7.924

Log Per Capita Income 3.032*** .727 17.380 1 .000 20.728 4.984 86.204

Population Change 0.106 .104 1.027 1 .311 1.111 .906 1.363

Baseball Distance -0.591*** .123 23.147 1 .000 .554 .435 .705

MLB Distance 0.378*** .099 14.682 1 .000 1.460 1.203 1.772

ProTeams -0.887*** .126 49.656 1 .000 .412 .322 .527

Intercept -82.93*** 8.883 87.157 1 .000

Log Population 3.233*** .206 247.228 1 .000 25.345 16.939 37.921

Log Per Capita Income 3.579*** .803 19.880 1 .000 35.828 7.430 172.759

Population Change 0.031 .097 .103 1 .749 1.031 .853 1.247

Baseball Distance -0.985*** .128 58.996 1 .000 .373 .290 .480

MLB Distance 0.955*** .114 69.819 1 .000 2.599 2.077 3.251

ProTeams -1.255*** .127 97.240 1 .000 .285 .222 .366

Table 12.

Multinomial Logistic Regression Parameters

Highest Level B Std. Error Wald df Sig. Exp(B)

95% Confidence Interval for 

Exp(B)

A

A-Advanced

AA

AAA

The reference category is No Team.

*** Coefficient is significant at the 0.001 level (2-tailed), ** Coefficient is significant at the 0.01 level (2-tailed), * Coefficient is significant at the 0.05 level (2-tailed).
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No Team A A-Advanced AA AAA
Percent 

Correct

No Team 1272 0 9 5 57 94.7%

A 143 7 4 0 20 4.0%

A-Advanced 61 0 25 5 27 21.2%

AA 108 5 0 0 74 0.0%

AAA 75 0 17 0 116 55.8%

Overall % 81.7% .6% 2.7% .5% 14.5% 70.0%

Classification Table: Multinomial Logistic Regression

Observed

Predicted

Table 13.

Note: Cells give the number of cities predicted to have a team at the given level.

 

 

 

 

 

 

options. Note that the highest probability may be, and in the vast majority of cases is, that 

the city has no team at any level. The classification with the next most cases is AAA, 

while the other three levels are few and far between. In fact, by the classification table, no 

city is predicted to have a team at the AA level. We see that we are correctly predicting 

only 70.0% of team locations with this method, most of those coming from cities with no 

team. Recall that if we simply predicted that none of the 2030 city entries had a minor 

league team, we would accurately predict the classification of 66.2% of the cities 

analyzed.  

 At first, this seems to really cast doubt on the predictive power of our model, 

especially when we seem to only be predicting either AAA or No Team. Some of this is 

for good reason: modeling MiLB team locations is no doubt a peculiar problem. 

However, jumping to the conclusion that our work is unhelpful at this point would be 

invalid for a couple reasons. First, this simplistic table may predict that 14.5% of the 

2030 US cities analyzed have a AAA team (that is, 42 per year), but of course we know 

that only 30 cities in the US have a AAA team. Thus, we expect those other high 

probabilities to trickle down to the other levels. More importantly, however, our analysis 
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is focused on ranking the cities based on the predictive probabilities at each level 

independently. Therefore, cities that have unusually high probabilities at more than one 

level will be more accurately represented and give a better picture of opportunities in 

minor league team location. 

 

DISCUSSION & CONCLUSION 

 Our first hypothesis was that a higher population would correspond to a higher 

likelihood of housing a minor league team at every classification. Since Log Population 

had a significant positive coefficient for every classification, our hypothesis is supported. 

Although it is not always the highest effect, the odds ratios show that it has a very 

prevalent effect across levels. On the other hand, Log Population was the only variable 

which fully supported its hypothesis. Log Per Capita Income did show a positive 

relationship at those levels where it was significant, and in those cases, the odds ratio 

shows that it had a greater effect than Log Population. The lack of significance at the 

lowest two levels requires some explanation, and it may have to do with the minor league 

hierarchy more than anything else. Amid the confusing results and different effects of per 

capita income in previous studies (Paul 2008), perhaps those cities with the highest 

income levels are being chosen first for the highest classifications, leaving fewer obvious 

options for lower-level teams looking for an affluent city. This would help explain the 

large effect of Log Per Capita Income at the higher levels as well. 

 Population Change is even harder to make sense of because not only are its 

coefficients significant for only some classifications: the differences are not easily 
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explained by hierarchy either. We see a positive relationship that supports our hypothesis 

for the AA and A levels, but the lack of significance for AAA and A-Advanced means that 

it is only partially supported. One possible explanation is structural: that team locations at 

the A-Advanced level are historically based on geography more than any other factor. By 

looking at the map of the 2012 A-Advanced landscape, this is easily seen. The California 

and Florida State leagues are composed entirely of teams within the respective states. Not 

only that, but several teams are often located together in some of the most populated 

CSAs in that state, such as Los Angeles and Miami. For this reason, it seems logical to 

suppose that geography may be a third variable limiting the mobility of teams at this 

level.9 Therefore, the dynamic nature of Population Change makes it less useful for 

predicting the locations of an A-Advanced team.  

 AAA is hard to explain as well, but ultimately we are drawn back to the hierarchy 

and the massive effects of Population and Per Capita Income. Since this is just one level 

lower than the MLB, we would expect it to be the level which houses teams in the highest 

population areas left over. Combine this with the higher income levels in those cities, 

according to the odds ratio, and we have the cities with the largest, most affluent market 

areas. So although these cities may not have the highest growth, they are likely the best 

locations for the time being. Of course, if a city keeps growing, its population numbers 

will show that fact, and it would be much easier to relocate at that point. 

                                                 
 
9 One could also argue the opposite: that the importance of geography should make population 

growth a more important factor since there are fewer high-population areas to choose from. This 
might make sense in the long-run, but conversely, the growth rate of a city may also change 
considerably in the long run. In other words, the high costs of stadium construction and relocation 
outweigh the benefits of moving to a growing city. 
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 The negative coefficient of ProTeams presents us with our first complete rejection 

of a hypothesis. It was significantly negative at every level, which goes against our 

intuition. ProTeams was designed as a measure of sports popularity in a given city, which 

should be positively related to the presence of a team. However, this seems to be showing 

a completely different phenomenon. Perhaps the most compelling reason for a negative 

relationship is that ProTeams is only measuring the highest level of professional sports 

teams. Therefore, it is not surprising that this overlaps with the MLB cities. Although 

some levels, notably A-Advanced, have teams in the same city as an MLB team, that is 

not true in most cases. In fact, only one MLB city (Atlanta, GA) also houses a AAA team. 

So although it is not a perfect answer, this does help explain why the relationship would 

be negative. In order to better reflect the aspect we were attempting to measure, it might 

be better to look at the locations of minor league teams in other sports. That said, 

baseball’s hierarchy is far more elaborate than most other sports, making it that much 

harder to know which leagues to choose for inclusion in such an index. In any case, the 

relationship does not appear to be large according to the odds ratios despite its statistical 

significance. 

 For Baseball Distance, we hypothesized that spatial monopoly power would cause 

us to see a direct relationship between it and Highest Level. The variable is significant for 

all classifications, but the relationship is in fact inversely proportional. That is, the farther 

a city is from the closest professional baseball team, the less likely that city is to have a 

minor league team regardless of the classification. As a consumer of minor league 

baseball, I still believe that spatial monopoly power is very much an important factor. In 
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reviewing the data, I concluded that the importance of spatial monopoly power is 

overshadowed by a lack of professional baseball teams in some isolated areas. For 

example, cities in the Rocky Mountain region were often closest to either the Colorado 

Rockies or the Seattle Mariners despite being hundreds of miles away. To the extent that 

this is prevalent, the lack of professional baseball in that region would then be associated 

with a great distance from the closest team at any level. So although we capped distance 

at 1,000 miles for two main outlier states, Alaska and Hawaii, perhaps distance would 

need to be limited even further to be able to see the effect of a spatial monopoly. Based 

on these findings, we reject the hypothesis that a greater distance from a professional 

baseball team, as we defined it, corresponds to a higher likelihood of housing a team. 

 Finally, MLB Distance was hypothesized to be significant for all levels, but have 

different effects depending on the level being considered. We predicted that a greater 

distance from an MLB team would lead to a higher probability of having a team at the 

lower three levels, but a lower probability of having a AAA team. Despite insignificance 

at the A level, the positive coefficients in the A-Advanced and AA models support our 

hypothesis for those levels. However, the AAA coefficient is positive as well, suggesting 

the opposite of our hypothesis for that level. Note that this is the opposite of the effect of 

Baseball Distance, where greater distance from a professional baseball team 

corresponded to a lower likelihood of housing a minor league team in that city. This 

supports our original thought that these variables were measuring different aspects of the 

question.  

 The original theory was that AAA teams would want to locate closer to an MLB 
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team, if it is their affiliate, to allow for quicker transfer of players at the highest levels due 

to injuries and the like. Once again, the data seem to be measuring a different aspect than 

we intended, albeit an important one: AAA games may be seen as substitutes for MLB 

games. In fact, all levels other than A appear to be substitutes for the MLB to some 

degree. This is especially true in areas like the Southeast, where MLB games are only 

played in Georgia and Florida. Perhaps consumers are not as concerned about the level of 

baseball as we had originally supposed.  

 Granted, this oversimplifies the clear differences in quality of play, but the basic 

point is that consumers of baseball appear to be, to some degree, consumers of all levels 

of baseball. To the extent that minor league teams are competitors with MLB firms, 

consumers would be likely to choose the option closest to them geographically. 

Furthermore, because there is a higher quality of play in the MLB, it makes even more 

sense that a minor league firm would need to locate farther away in order to compete 

effectively. Therefore, we reject the hypothesis that the greater a city's distance from an 

MLB team, the higher its likelihood of housing a AAA team. Here we conclude that 

although Baseball Distance and MLB Distance do seem to be measuring different aspects 

of team location, they do not appear to be measuring the aspects we intended for them. 

MLB Distance is effectively describing the distance to a competitor rather than a 

potential affiliate, while Baseball Distance is a measure of complete geographic isolation 

rather than spatial monopoly power. Even though these outcomes are different from our 

hypotheses, the models results are not invalidated. Instead, we use them to learn how to 

evaluate these variables based on what they actually appear to be measuring. 
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 Earlier we learned that Classification Table 13 shows the predicted classifications 

of the 2030 cities analyzed for the seven years combined. It was clear to see that the 

model was predicting more cases correct at some levels than others, most notably the fact 

that not a single city was correctly predicted to have a team at the AA level. However, 

this analysis relies on choosing the classification with the highest probability of the five 

choices, including No Team. Because a limited number of teams play at each level, this is 

not the best way to analyze our results. Simply put, the city ranked thirty-first at AAA 

would still not have a team in our choice of optimal locations because the level is limited 

to thirty teams. However, it is quite possible that a team that just misses one classification 

would be a good candidate for another, lower level. 

 For this reason, all cities were ranked according to their predicted probabilities at 

each level. Since there were seven entries for each city due to analyzing seven years of 

data together, the highest probability for each city was used in creating the rankings. 

Using the actual team locations from 2012, cities were also coded as to whether or not 

they housed a team at the given level during the final year of our analysis. This allowed 

us to produce “Top 10” and “Bottom 10” lists just as Davis did. Table 14 contains the 

cities predicted most likely to have a team that do not for each level, while Table 15 ranks 

the cities least likely to have a team at a given level that had a team in 2012. No city was 

excluded from being ranked at any level, so there are times when the same city is shown 

as an optimal choice for more than one level. This must be interpreted with caution, as it 

is typically unusual for a city to have more than one (or certainly two) minor league 

teams.  
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In comparing our list to Davis’ Tables A1 and A2 in the Appendix, we see both 

similarities and differences.10 One thing that we notice immediately is that many major 

league cities are listed as high probability areas for minor league teams as well. Once 

again, we must interpret this with caution. On one hand, there are clear instances where a 

city can house both a major and minor league team, such as Los Angeles.  However, we 

also know that these cases are not common, so our model seems to be a bit overconfident 

in predicting minor league locations in cities with MLB teams. For ease in picking out 

these cities, the Top 10 lists denote which cities already house MLB teams. Another 

potential issue is showing that a city does not have a team at one level when it actually 

has a team at a higher level. The table also makes these inconsistencies easy to pick out. 

In Table 14, four of our top ten AAA cities were also predicted by Davis, albeit in 

a different order. The similarities seem to increase when we see that our top ten list is 

composed of six non-MLB cities. Personally, I am a bit surprised to see that Greensboro, 

NC is ranked second overall for AAA team locations. As someone who has spent some 

time in the area, I know very well that it is not the largest, richest, or most well-known 

city even within its state. That said, a review of the data shows that despite these facts, 

Greensboro consistently has “enough” in every category to make it an attractive location 

according to the model: a population that is higher than 1,000,000; a middle-of-the pack 

per capita income level, a couple hundred miles of separation from the nearest MLB 

team, and 100 miles of proximity to several other AAA professional teams to compete  

                                                 
10 Remember that some of the cities listed as likely locations for Davis (ie. Allentown, PA) have since 

been added as part of a larger CSA. This issue means that it would be inaccurate to immediately 
assume that certain cities have “dropped out” of the Top 10, as they may have simply been reclassified 
by the government. 
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Table 14.  

Cities Most Likely to Have a Team That Do Not 

Rank AAA 

1 Chicago-Naperville, IL-IN-WI (1)
m
 

2 Greensboro--Winston-Salem--High Point, NC (4) 

3 Portland-Vancouver-Salem, OR-WA (6) 

4 San Jose-San Francisco-Oakland, CA (7)
m
 

5 San Antonio-New Braunfels, TX (10) 

6 Tulsa-Muskogee-Bartlesville, OK (11) 

7 Little Rock-North Little Rock, AR (15) 

8 Hartford-West Hartford, CT (19) 

9 San Diego-Carlsbad, CA (20)
m
 

10 Philadelphia-Reading-Camden, PA-NJ-DE-MD (21)
m
 

    

Rank AA 

1 Houston-The Woodlands, TX (1)
m
 

2 Seattle-Tacoma, WA (2)*
m
 

3 Austin-Round Rock, TX (3)* 

4 Cape Coral-Fort Myers-Naples, FL (5) 

5 Omaha-Council Bluffs-Fremont, NE-IA (6)* 

6 Miami-Fort Lauderdale-Port St. Lucie, FL (7)
m
 

7 St. Louis-St. Charles-Farmington, MO-IL (8)
m
 

8 Des Moines-Ames-West Des Moines, IA (9)* 

9 Albany-Schenectady, NY (10) 

10 North Port-Sarasota, FL (13) 

    

Rank A-Advanced 

1 Atlanta--Athens-Clarke County--Sandy Springs, GA (1)*
m
 

2 Phoenix-Mesa-Scottsdale, AZ (5)
m
 

3 Charlotte-Concord, NC-SC (6)* 

4 Fresno-Madera, CA (7)* 

5 Sacramento-Roseville, CA (9)* 

6 New York-Newark, NY-NJ-CT-PA (11)*
m
 

7 Rockford-Freeport-Rochelle, IL (15) 

8 Cincinnati-Wilmington-Maysville, OH-KY-IN (19)
m
 

9 Nashville-Davidson--Murfreesboro, TN (20)* 

10 Columbus-Marion-Zanesville, OH (22)* 

*. City has a team at a higher level 
m
. City has an MLB team 
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Table 14.  

Cities Most Likely to Have a Team that Do Not (cont.) 

Rank A 

1 Youngstown-Warren, OH-PA (2) 

2 Toledo-Port Clinton, OH (3)* 

3 Lakeland-Winter Haven, FL (4)* 

4 Springfield-Greenfield Town, MA (5) 

5 Modesto-Merced, CA (7)* 

6 Chattanooga-Cleveland-Dalton, TN-GA-AL (8)* 

7 Lancaster, PA (10) 

8 Bakersfield, CA (13)* 

9 Rockford-Freeport-Rochelle, IL (14) 

10 North Port-Sarasota, FL (15)* 

    

Rank Any Level 

1 San Diego-Carlsbad, CA (5)
m
 

2 St. Louis-St. Charles-Farmington, MO-IL (6)
m
 

3 Portland-Vancouver-Salem, OR-WA (10) 

4 Houston-The Woodlands, TX (13)
m
 

5 Cincinnati-Wilmington-Maysville, OH-KY-IN (19)
m
 

6 Detroit-Warren-Ann Arbor, MI (20)
m
 

7 Milwaukee-Racine-Waukesha, WI (23)
m
 

8 Albany-Schenectady, NY (32) 

9 Phoenix-Mesa-Scottsdale, AZ (38)
m
 

10 Pittsburgh-New Castle-Weirton, PA-OH-WV (39)
m
 

*. City has a team at a higher level 
m
. City has an MLB team 

 

against on the field. 

For AA, only Albany, NY is predicted in the top ten for both models, and our lists 

for A-Advanced are completely different. The Class A rankings have nothing for 

comparison, while the rankings for any MiLB level are virtually unhelpful because they 

predict so many MLB cities. One aspect that I think is a strength of our model is the lack 

of Honolulu as an optimal city. Although Davis predicts it as a highly ranked potential 

city, our model accounts for its distance to the closest team and effectively penalizes it for 
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Table 15.  

Cities Least Likely to Have a Team that Do 

Rank AAA 

1 Toledo-Port Clinton, OH (114) 

2 Scranton--Wilkes-Barre--Hazleton, PA (99) 

3 Colorado Springs, CO (96) 

4 Buffalo-Cheektowaga, NY (91) 

5 Reno-Carson City-Fernley, NV (75) 

6 Tucson-Nogales, AZ (71) 

7 Fresno-Madera, CA (64) 

8 Indianapolis-Carmel-Muncie, IN (54) 

9 Syracuse-Auburn, NY (50) 

10 Columbus-Marion-Zanesville, OH (49) 

    

Rank AA 

1 Altoona, PA (257) 

2 Jackson, TN (209) 

3 Binghamton, NY (155) 

4 Erie-Meadville, PA (154) 

5 Springfield-Branson, MO (118) 

6 Fayetteville-Springdale-Rogers, AR-MO (94) 

7 Chattanooga-Cleveland-Dalton, TN-GA-AL (84) 

8 New York-Newark, NY-NJ-CT-PA (81)
m
 

9 Midland-Odessa, TX (73) 

10 Corpus Christi-Kingsville-Alice, TX (69) 

    

Rank A-Advanced 

1 Montgomery, AL (125) 

2 Lynchburg, VA (101) 

3 Roanoke, VA (86) 

4 North Port-Sarasota, FL (76) 

5 Myrtle Beach-Conway, SC-NC (72) 

6 Miami-Fort Lauderdale-Port St. Lucie, FL (67)
m
 

7 Palm Bay-Melbourne-Titusville, FL (45) 

8 Raleigh-Durham-Chapel Hill, NC (25) 

9 San Jose-San Francisco-Oakland, CA (21)
m
 

10 Bakersfield, CA (18) 
m
. City has an MLB team 
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Table 15.  

Cities Least Likely to Have a Team that Do (cont.) 

Rank A 

1 Washington-Baltimore-Arlington, DC-MD-VA-WV-PA (277)
m
 

2 Burlington, IA-IL (265) 

3 Charlotte-Concord, NC-SC (256) 

4 Clinton, IA (255) 

5 Denver-Aurora, CO (253)
m
 

6 Chicago-Naperville, IL-IN-WI (233)
m
 

7 Rome-Summerville, GA (186) 

8 Greensboro--Winston-Salem--High Point, NC (163) 

9 Bowling Green-Glasgow, KY (128) 

10 Charleston-North Charleston, SC (92) 

    

Rank Any Level 

1 Burlington, IA-IL (288) 

2 Clinton, IA (287) 

3 Jackson, TN (242) 

4 Rome-Summerville, GA (241) 

5 Altoona, PA (235) 

6 Bowling Green-Glasgow, KY (185) 

7 Binghamton, NY (156) 

8 Lynchburg, VA (154) 

9 Midland-Odessa, TX (143) 

10 Roanoke, VA (139) 
m
. City has an MLB team 

 

being so isolated.11 Granted, it is still ranked in the top 30 cities for a AAA team, but not 

nearly as high as in the Davis model. Although it seems clear that our model does not 

always orient itself toward the real-world, in this case it seems to do that very nicely. 

Table 15 seems to be more similar to the original work done by Davis, although 

still quite different. While six of Davis’ bottom ten are in ours as well, there seem to be 

some notable differences in ranking. For instance, Toledo, OH ranks as a bottom ten city 

for both models. Although Davis ranks them 38th, our model ranks them at 114th. 

                                                 
11  When a model was run without capping the distances from MLB teams and the closest professional 

baseball team, Honolulu was ranked very highly just as it was for Davis.  
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Similarly, six cities are found to be unlikely to have teams at the AA level in both models, 

but more major differences in city ranking is noticed. The addition of three variables 

appears to have a significantly different effect on predicted probabilities. In the coming 

years we will be able to tell whether or not this has a positive effect on our power to 

predict where MiLB teams will locate in the future.  

 Again, the full rankings, Top 10 lists, and predicted probabilities of every city and 

every level analyzed can be obtained by email. With the predicted probabilities in plain 

sight, we learn that there is usually very little difference in predicted probabilities among 

the top five or ten. In the case of the AA level, even as this is expanded to the top fifty, 

the difference in these rankings is not always very large. However, in comparing a top 

twenty city to one with a triple digit ranking, the probability may be many times greater 

for the higher ranked city.  

 Finally, since this is a topic in spatial economics, maps are provided at the 

beginning of the appendix that compare the actual MiLB landscape of 2012 to the 

optimal cities chosen by the model. Although it is not a perfect assumption, the locations 

of the top thirty cities at each level were plotted on the map as distinct, optimal locations. 

In the case that a city was predicted to have a team at more than one level, only the 

highest level is shown in the map of all predicted cities combined. While all levels have 

geographic limitations, those of the A-Advanced level are very noticeable, showing why 

our optimal A-Advanced landscape would be impossible without a complete overhaul of 

the league structure. That said, the model does a better than expected job of placing many 

teams in California and Florida. 
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We also see that Class A teams are generally limited to geographic locations east 

of the Mississippi River. While the model does predict many cities in the Midwest would 

have a Class A team, there are few teams listed that would fit into the actual South 

Atlantic League. In addition, because the model does not account for transportation costs 

between competitors, there are a few teams in California or otherwise isolated areas. For 

AA, the model predicts virtually a complete overhaul of team location from the Southeast 

to the Midwest and Texas. Although there are fewer teams in the Northeast according to 

the model’s output, there are still a good number of teams in that region. On the other 

hand, the model seems to predict fewer AAA teams in the Northeast than are there 

currently, but more in the Southeast instead. By looking at the actual locations of AAA 

teams, there is no question that this level is the most geographically disbursed. Also, by 

looking at previous maps created by the model, we notice that places like Tucson and 

Colorado Springs were predicted to house much lower-level teams than AAA.  

 The limitations of this study are many to say the least. To begin, because of the 

complexity of predicting minor league baseball team locations, we are already at a 

disadvantage. The fact that the two distance variables did not measure the intended 

aspects of team location gives us pause, and some might call into question the validity of 

the model for that very reason. However, I contend that since we were able to make sense 

of the dimensions these statistically significant variables might be measuring, this could 

be an area of future research. Maybe by capping the distances at an even lower number, 

or creating a dummy variable representing a distance less than a given number of miles to 

the nearest team, one could get a better idea of how spatial monopoly power plays a role. 
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 Other major limitations to this research are geographic, as our model does not 

account for the current spatial setup of leagues at the different levels. This means that 

everything from transportation costs to overall eligibility for relocation at the beginning 

stages of that process are not considered to the degree that they would need to be. 

Additionally, the rule requiring teams to locate at least eighteen miles apart from each 

other was not taken into account either. Although the inclusion of MLB cities is a step in 

the direction of more practical application, future research could be dedicated to making 

the model even more applicable to the real-world. 

 In that same vein, there are other real-world application questions that are not 

related to geography. Since we learned that stadium availability can often be the deciding 

factor in a relocation decision, any measure that accounts for whether a suitable stadium 

already exists in different cities would be helpful. Differences in stadium quality could 

also be an important aspect to consider if it could be quantified in some way. Then there 

is the most practical of dependent variables: attendance at ballgames. As this is the factor 

that drives revenues for a minor league team, it would be interesting to see whether or not  

our model’s predicted cities were also those with higher attendance and profitability. 

Another related question would be to analyze the trend surrounding changes in 

affiliation as opposed to relocation. Whereas there are usually one or two franchise 

moves in a given year, affiliations change at an even higher rate. What are the motives 

behind these decisions? Is it motivated by profit potential, geographic proximity to the 

major league affiliate, or something completely different? A crude look at the distances 

from a minor league team to its affiliate shows that the average distance has decreased 
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from 742 to 701 miles from 2006-2012, while the median has consistently hovered 

around 490 miles. Since this question may be even more complex than franchise location, 

it appears to be an obvious area for potential research. 

 Overall, the main question that we are left wondering is whether or not this model 

will be more effective in predicting franchise moves in the coming years than Davis was 

in 2006. Although I hope that this work will prove to have strong predictive power, the 

very fact that a professor with many years of experience was unable to perfectly answer 

this question prevents me from feeling overly-confident. In either case, I believe that 

academics are just beginning to skim the surface of topics like these in sports business. 

The game of baseball is itself based on a series of mind games and adjustments made 

after every pitch. Sports economists and statisticians should take the same approach to 

answering complicated questions in our field. Over time, our predictive ability will 

increase as previous assumptions continue to be challenged and ultimately discarded as 

models become more realistic. My greatest hope in writing this is that we will stand in 

the batter’s box together, working the count until we are able to knock one out of the 

park.
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APPENDICES 
 

The Appendix to this work contains several different elements. It begins 

with visual representations of the 2012 Minor League Baseball landscape, 

organized by level. Interspersed between these are the maps of the Top 30 

city locations predicted by the model for each level in order to provide easy 

comparison between our predictions and the current reality. A map of the 

major league locations is provided as well. Followed by these maps are some 

tables referenced in the work, including Davis’ model-predicted locations 

and an extended table of descriptive statistics. 
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