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1.  Introduction 

1.1  Motivation 

Wall Street is chaos. Money changes hands in a fraction of a second. 
Prices fluctuate seemingly arbitrarily, and the entire system seems little more 
than gambling. Yet, in recent history, a mathematical breakthrough 
transformed the face of the stock market. Three decades ago, Fischer Black 
and Myron Scholes developed the Black-Scholes Formula for “eliminating 
risk,” so to speak [1][4]. Their enterprise earned billions of dollars and won 
them the Nobel Prize in Economics, as top investors would lend money in 
exchange for part of the return. Suddenly, the formula stopped working. The 
market caved, and the business started by the two mathematicians, Long-Term 
Capital Measurement, lost massive amounts of money in 1998. Today, the 
formula is still used, but with caution because of its sudden, temporary failure. 
The constantly shifting dynamics of the market have ensured that no one 
formula will stay in power for long. Many investors today use some variant of 
the Black-Scholes formula, though the original formula remains fairly accurate 
under the proper conditions.  

 
The possibilities of risk and chaos continue to the present day. As 

recently as 2012, almost four years after the 2008 financial crisis, caused in 
part by new complex asset classes such as credit default swaps, bank 
JPMorgan lost two billion dollars due to continued risky trading strategies. 
Executives responsible for the sector of the organization that made the risky 
trades subsequently testified in Congress. The incident is a sobering reminder 
of how dangerous the options market can be when the wrong methods are used 
[2][3]. 

1.2  Options Markets 

With today’s complex financial instruments that affect the market, 
fluctuations in prices and preferences increase risk, and by doing so, often 
inhibit trade. People who have little knowledge of the intricacies of risk and 
the market can often suffer. For example, farmers may create an agreement 
akin to a “put option” to ensure financial security [7]. These farmers set a 
price to sell their year’s crop, and make an agreement that, when the crop is 
harvested, the farmer has the option, but not the obligation, to sell his goods to 
the resource consumer at the previously agreed upon price, regardless of the 
market price of the farmer’s goods at harvest time. The unpredictability of the 
general level of prices can harm farmers who do not know how to use this 
technique. If the market price of the farmer’s goods caves when the farmer’s 
crop is ready, an entire year of work could be compromised without insurance 
in the form of a put option.  
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Such precautions can be undertaken to prevent market calamities from 
affecting farmers and individuals in similar scenarios. Using Black-Scholes, 
farmers could determine appropriate prices to assign the put options for their 
crops. This paper presents an economic model that can be used to study how 
different factors and preferences play into the farmer’s decision. Would it be 
beneficial to deviate somewhat from the formula’s result? How long should 
one wait before entering into the market? These are the kinds of questions this 
research addresses. Other vendors with perishable products, such as 
newsvendors and bakers, can use similar techniques in their businesses. They 
have to price their products and predict how much to produce to satisfy 
customers yet minimize waste when their products expire, and maximize their 
business success.  

 
The more experienced equity market traders often successfully reduce 

their risk in their investments. They use similar techniques as the 
aforementioned examples of farmers and newsvendors to reduce risk in certain 
investments. As a put option transfers the risk of a stock, the risk falls on 
whoever is willing to accept it in exchange for a chance of reward. Traders in 
situations where a crash on certain stocks within a certain time would be 
disastrous have the ability to use options as temporary insurance. By reducing 
the risk for their own investments, especially when making large investments, 
they also reduce the volatility of the market and thus the risk for everyone. 

1.3  Overview of Research 

The world’s best-known options pricing model, the Black-Scholes 
Formula, is used to calculate the theoretical price of options. However, there is 
one important factor not incorporated into Black-Scholes which may have led 
to its infamous failure when used by Long Term Capital Management and in 
other notorious market events. The concept of jump diffusion—a model of 
random jumps that occur in the options market—can have significant effects 
on the success of traders using Black-Scholes [20]. A purely Black-Scholes 
model ignores possible random jumps that, while rare, can occur in the options 
market and render the formula unusable. The formula’s difficulties in 
determining prices in the presence of jumps may have led to its failure in the 
past. In the current literature, some researchers argue that the random nature of 
the jumps warrants excluding the jumps from a trader’s calculations, since the 
random walk is independent of the random jump [17]. Others believe that in a 
jump diffusion scenario traders should use a higher price than the Black-
Scholes result to avoid losses [15]. Given the uncertainty of jump diffusion 
effects, this research seeks to incorporate jump diffusion into an options 
market model to help understand its effects. Being able to detect the presence 
of jumps in a given market would help protect both big and small investors 
and the overall economy. 
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 This research on the Black-Scholes pricing equation uses the agent-
based modeling language NetLogo, a tool used by sociologists to study group 
behavior, to simulate a market trading options on the price of an underlying 
asset behaving as a geometric Brownian motion process subject to jump 
diffusion. This unique approach pairs mathematical calculations with 
behavioral rules, simulating detailed actions and decisions in a custom 
program. Tracking several variables and modeling option trader decisions, the 
simulated agent-based options market was analyzed under varying conditions 
and multiple market runs. During each market run, the results of thousands of 
simulated traders estimating prices, each trader making hundreds of decisions, 
were collected, plotted, and analyzed. Successive markets were aggregated in 
a Monte Carlo method to converge on consistent results. This powerful, 
flexible model enables the user to set various parameters for the market and 
traders, and gives a convenient, in-depth view of key indicators of market 
behavior. The simulation with the inclusion of Black-Scholes and jump 
diffusion has been accepted into Northwestern University’s NetLogo Models 
Library [21]. 
 
 Using the NetLogo option market framework developed by the author, 
this research extends the model to examine the effects of jump diffusion. 
Based on a partial differential equations model of geometric Brownian motion 
representing the time series of the underlying asset price, the Black-Scholes 
formula calculates the current value of an option contract based on market and 
option parameters, including the underlying asset price volatility. However, 
prices sometimes experience shocks that are not accurately modeled by a 
geometric Brownian motion process alone. Since the Black-Scholes formula 
does not adequately predict these “fat tail” events, jump diffusion techniques 
were implemented in this research to examine the conditions under which 
Black-Scholes becomes unreliable. Furthermore, kurtosis, the volatility of the 
underlying asset price volatility, was calculated in the model, and this kurtosis 
was examined under jump diffusion conditions. 
 
 The purpose of the research was to test whether agent-based modeling 
could successfully depict traders using the Black-Scholes formula in an 
options market subject to jump diffusion, and exhibit market behaviour useful 
for analysis and for helping to understand the complex interactions of the 
options market. An analysis of the current literature reveals that one research 
group has created an agent-based model of the Black-Scholes Formula but did 
not incorporate jump diffusion or use the NetLogo platform [8][10][12]. 
 
 For the research presented in this paper, it was hypothesized that 
increasing jump diffusion would result in measurably “toxic markets” that 
impair traders’ ability to successfully use the Black-Scholes Formula. The 
kurtosis was also predicted to rise when jump diffusion was present. It was 
hypothesized that kurtosis of an underlying asset price could signal if an 
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options market was "toxic" by accurately and consistently detecting whether 
jump diffusion was in effect. An analysis of the current literature reveals that 
these hypotheses are unique and represent new advancements in the field. 
Since the model yields abstract results from a simulated market, findings must 
be quantified to benefit individuals who use option-contract-related methods. 
For this reason, the results of market runs with varying jump diffusion and 
volatility values were examined to find which combinations of variables can 
create unpredictable markets. To find the results, jump frequency, jump size, 
and jump variance were adjusted, along with the underlying asset price 
volatility, and, over several aggregated runs, the behavior of the market was 
observed.  

 After running the simulation, the results confirmed the hypothesis. 
Jump diffusion made the market more hazardous, as exemplified by analyzing 
several variables. In addition, the kurtosis proved to be a reliable indicator of 
whether jump diffusion was present. Overall, this paper shows that agent 
based tools such as NetLogo are useful for modeling and understanding both 
the intensive mathematics and the complex trading behavior in the options 
contract market. The mathematical modeling and simulation tool presented 
here provides an effective platform for analyzing such markets. From such 
analysis, one can determine the risks and strategies associated with differing 
market conditions. 
 

The remainder of this paper is organized as follows. Chapter 2 provides a 
description of the simulation mathematics. The design of the custom simulation is 
explained in Chapter 3. Results from the simulation are presented in Chapter 4, along 
with sample data and an error analysis. Finally, Chapter 5 covers conclusions 
including possible directions for future research.  

 

2. Equations for Black-Scholes Option Pricing with Jump Diffusion

  
 
2.1  Geometric Brownian Motion 
 

Geometric Brownian motion is a mathematical calculation for a random walk 
[4]. A two-dimensional line graph of a random walk with geometric Brownian 
motion exhibits behavior similar to a stock price, which is why the Black-
Scholes Formula is based on geometric Brownian motion. All the effects that 
perturb an asset price or other measured variable in nature are aggregated in to 
a single volatility value sigma. 

����� �  ������� 	  
���������� 

S = price of asset (dollars) 
t = time (years) 
µ = drift rate (unitless) 
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σ = volatility (unitless) 
dWp= stochastic differential equation for stock prices  

2.2 Geometric Brownian Motion with Jumps 

            Geometric Brownian motion with jumps features an additional term 
that determines the size and frequency of an additional jump process beyond 
the random walk. A Poisson random distribution multiplied by J – 1 allows for 
the chance of a jump in the market [16].  

��� � ������� 	 
������
 	 �� � 1���������� 

S = price of asset (dollars) 
t = time (years) 
µ = drift rate (unitless) 
σ = volatility (unitless) 
dWp= stochastic differential equation for stock prices  
J = random process based on a normal distribution determining the jump size 
N(t) = Poisson random process with intensity λ determining the jump 
frequency 

2.3 Black-Scholes Option Pricing Equations 

The Black-Scholes Equation mostly uses values that are known to all traders. 
However, the volatility is estimated from observance of the stock market 
behavior, so the actual volatility is hidden from the simulated traders. Black-
Scholes gives what the price of the option should be as a result of the inputted 
variables. This result can be compared to the market price of the option to 
determine whether one should buy or sell. Derivation and proofs of the Black-
Scholes Equation are available in several references [4][15][16] and are 
beyond the scope of this paper. For a call option, the trader has the option, but 
not the obligation, to buy the underlying stock at the strike price on the 
expiration date. For a put option, the trader has the option, but not the 
obligation, to sell the underlying stock at the strike price on the expiration 
date. 
 

 Call Option Equation for Black-Scholes 

���, �� �  ���1�� � ���2��������
� 
 

 Put Option Equation for Black-Scholes 

���, �� �  ����2��������
� � ����1�� 
 

�1 �  
ln ��

�� 	  �� 	  
 
2 ��! � ��


√! � �  
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�2 � �1 � 
√! � � 
 
C( ) = call option price 
P( ) = put option price 
S = spot price (the price of the underlying stock) 
K = strike price (the agreed upon price of the stock at maturity) 
r = risk free rate of interest 
σ = stock volatility 
N( ) = normal standard distribution function 
T - t = time until maturity 

 

2.4 Jump Diffusion Option Pricing Equation 

With jump diffusion present, the values σ and r in the Black-Scholes equation 
are replaced with σk and rk, as calculated with the two equations below the 
main jump diffusion equation, which is a summation. As the value of k 
increases, the probability of k jumps happening decreases. In this way, the 
amount of money added to the new jump diffusion price converges to zero as 
k number of jumps happening becomes increasingly unlikely. The result of the 
jump diffusion equation gives how much to add to the value of the purely 
Black-Scholes price due to random jumps [16]. The presence of jump 
diffusion largely poses a threat because its associated variables cannot be 
calculated by individual traders, in contrast to the basic Black-Scholes variable 
sigma which can be estimated reliably by traders.  

 

�#$ � %
&

'()
exp��-λ!� �-λT�0

1! �34��, �, 
', �' , !� 


' � 5
 	 16 /! 

�' � � � λ�- � 1� 	 1 89:�-�/! 

PJD = price with jump diffusion 
PBS = price with Black-Scholes 
v = jump volatility 
k = number of jumps 
λ = average number of jumps for each T-t 
m = average jump size 
T = time until expiration 
S = spot price 
K = strike price 
r = original risk free rate 
σ = original volatility 
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2.5 Kurtosis Equation 

            Kurtosis is equivalent to the calculation of volatility of volatility, or 
how much the underlying sigma value fluctuates. Essentially, kurtosis shows 
how much a distribution measures up to a normal distribution based on the 
peakedness or flatness of the distribution. A kurtosis departing from zero 
(positively or negatively) indicates that the option market sigma value is 
potentially unpredictably volatile, and the price behavior is departing from the 
constant-sigma geometric Brownian motion model upon which the Black 
Scholes formula relies. In this project, kurtosis was discovered to be an 
excellent detector of the presence of jump diffusion.  

�;��9<=< �  >1 %� ?@ � ?A
<  �B 	  >2 

 

>1 �  C�C 	 1�
�C � 1��C � 2��C � 3� 

 

>2 �  � 3�C � 1� 

�C � 2��C � 3� 

xi = ith value  
xA  = sample mean                   
n = number of samples 
s = sample standard deviation 

3. Simulation Design 

The model was programmed for this research using the agent-based 
modeling software NetLogo [21]. The NetLogo program creates multiple 
agents who interact within a simulated model. So-called agent based programs 
can be used for a wide variety of purposes, from simulating the spread of a 
disease to simulating a traffic grid. The Black-Scholes options market model 
created in NetLogo relies largely on the mathematical equations for geometric 
Brownian motion and the Black-Scholes formula, as well as the behavioral 
rules for simulated options traders. In this particular paper, an options market 
is defined as a group of individuals trading European stock options, which are 
stock options that can only be “cashed in” at the expiration date and not 
before.  

 
Based on geometric Brownian motion, the Black-Scholes formula 

calculates the current value of a stock option using the variables of time until 
expiration, spot price, strike price, risk free rate of interest, and volatility. For 
the model, simulated options traders are created, each observing the 
underlying stock price, adjusting their calculations of the stock’s volatility 
using their individual “judgement” and “patience” values [10][12]. Judgement 
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refers to how far the trader incorporates personal judgement and deviates from 
the Black-Scholes formula. Patience refers to how quickly the trader enters the 
market and how much of the past market the trader looks at in calculations, 
especially in considering the key unknown value in the formula: underlying 
stock volatility. Figure 1 gives an overview of the simulation activity, 
described in more detail below. 
 

Figure 1: The cycle of the program, ending with the calculation of profits and 

losses 
 

 

In this agent-based model of an options market, a plot was created 
mapping different traders on a grid, as shown in Figure 2 below. Each small 
square represents a trader. The x and y values of the traders on the plot 
indicate their judgement and patience, respectively. Each trader calculates an 
individual desired price based on the Black-Scholes Formula and each 
individual trader’s own best estimate of volatility. Thus, the traders deviate 
according to their individual judgement and patience, allowing one to study 
how different personal variables affect success in the market as the traders 
seek more profitable operating points.  

The traders are color coded depending on their success. Red signifies 
loss, while green signifies success. Lighter colors are on the extremes of 
success and loss. Conversely, the darker the color, the closer the trader is to 
zero profit or zero loss. The blue square indicates the most successful trader, 
and the yellow square indicates the least successful trader. Additionally, the 
user can adjust values such as the starting price or the actual volatility that is 
hidden from traders. Using the “Monte Carlo” method, markets are run 

8

Undergraduate Economic Review, Vol. 11 [2015], Iss. 1, Art. 14

https://digitalcommons.iwu.edu/uer/vol11/iss1/14



 
 
   

 

 9

quickly in succession, and the results of each market are averaged into the 
aggregate results of all the market runs.  

Figure 2 : Simulator Plot of Judgement versus Patience 

 
 

Increasing Judgement  

 
Traders enter the market when their patience in days has been reached. 

While the market runs, the spot price is updated with geometric Brownian 
motion plus jump diffusion. The traders update their minimum and maximum 
volatility if they see a new lowest or highest volatility, which in turn 
determines their buy and sell price. The market price of the option is found by 
taking the maximum buy price and minimum sell price of the traders and 
averaging the two. The traders look at the current options prices, and then they 
decide whether they want to buy or sell. At this point, the traders calculate 
with Black-Scholes and their estimated sigma what their buy and sell prices 
are, incorporating judgement. Their money and number of options contracts 
are both updated accordingly.  

 
The program then finds the best and worst values for judgement and 

patience among the traders and indicates those two values on the graph (blue 
for the most successful trader, yellow for the least successful trader). The 
current true price is also calculated for the user to view, using the actual sigma 
value hidden to traders. The program then finds the pricing bias (how far off 
the market price is from the price calculated with the actual volatility), and 
includes that in the mean pricing bias over time. Finally, the program 
calculates the current profit of the traders. Throughout the processes of 
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running the market, the program updates the graph of stock price, the graph of 
the options market, the sigma (volatility) plot with minimum and maximum 
sigma, and the rate of activity in terms of buying and selling.  

 
Jump diffusion techniques add an extra dimension to the program [18]. 

Adjustable variables direct the magnitude, frequency, and variance in the 
jumps that occur. Lambda increases the frequency of the jumps, and with 
standard time settings, lambda is the average number of jumps per year. The 
value ‘m’ gives the average size of the jump, with values below one giving 
negative jumps on average and a value of one giving equal probability of 
positive or negative jumps. The value ‘v’ is the jump volatility, which adjusts 
the variation in the size of the jumps. With the jump diffusion variables, one 
can analyze an options market with random jumps or crashes to examine the 
impact on the Black-Scholes formula’s success.  

 
Kurtosis calculates the value of volatility of volatility [19]. Volatility 

of volatility is used to determine how "toxic" a market is. A toxic market is 
defined as one that is unstable or difficult to predict, making it undesirable to 
participate in such a market. Under high volatility of volatility, the underlying 
volatility becomes more elusive because it varies more. When the underlying 
stock volatility is harder to pin down, Black-Scholes becomes less effective. 
Therefore, markets with high volatility of volatility are toxic markets—these 
markets are best avoided because traders cannot use robust analytical 
techniques to combat random chance.  

4. Results 

4.1 Simulation example 

Figure 3 below shows the user interface of the model, captured after 
123 market runs have been aggregated. The main display discussed earlier is 
located to the right. Recall that judgement increases from left to right, and 
patience increases as one moves upward. The red on the graph indicates 
unsuccessful traders, while the green represents successful traders. In addition, 
the traders with higher judgement values have mostly done better in this 
market, as the graph shifts from red to green as one moves from left to right. 
The asset price graph in the upper left corner also displays a jump, and the 
other graphs show the jump’s effect on the option prices and the estimate of 
sigma. 

 

10

Undergraduate Economic Review, Vol. 11 [2015], Iss. 1, Art. 14

https://digitalcommons.iwu.edu/uer/vol11/iss1/14



 
 
   

 

 11

Figure 3 : Screenshot of options market simulator 

 
4.2 Simulation Analysis 

 

 To focus on the effects of jump diffusion, the following parameters 
were held constant in the simulation runs presented in this chapter: option time 
to expiration = 1 year, simulation time step = 1 day, risk free rate of interest 
(µ, drift) = 0.02, minimum and maximum judgement and patience values, 
initial spot price = 100, strike price = 100, and the number of market runs = 
500. The variables and constants are summarized in the table below. 

Table 1 : Variables and constants used to analyze the effects of jump diffusion 
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Figure 4 : Mean Kurtosis 

 
 
Figure 5 : Mean Kurtosis, Detail at Low Jump Volatility 

 
 

The graphs in Figures 4 and 5 portray the volatility of volatility, or kurtosis, 
measured for a call options market averaged over 500 market runs for various 
sigma and jump volatility values. Lambda was alternated between lambda = 0 
(no jumps, for the purple, light blue, and gold lines, which are virtually 
collinear) and lambda = 1 (one jump per year on average, for the blue, red, and 
green curves). As shown, even with just one jump per year, mean kurtosis 
spikes at low jump volatility values, thereby making mean kurtosis an 
effective measure of the presence of jump diffusion. As predicted by theory, 
this graph illustrates that underlying asset volatility sigma has a negligible 
effect on mean kurtosis, especially compared to jump diffusion. Therefore, 
mean kurtosis gives a clear indication of whether jump diffusion is present. 
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Figure 6 : Max-Min Average Profit, Lambda = 1 

 
 

Figure 7 : Max-Min Average Profit, Lambda=1, Detail at Low Jump Volatility 

 
 

Figures 6 and 7 show the difference between maximum profit (most successful 
trader) and minimum profit (least successful trader), in a given market run, 
averaged over 500 market runs for a lambda of 1 (one jump per year on 
average). As the graphs show, this max-min profit value increases with jump 
volatility, as the effects of jump diffusion create a wider disparity between the 
most and least successful traders. As a result, jump diffusion increases how 
much the option could change from its initial price. Therefore, those who wish 
to avoid losing money from excessive market swings would do best to stay out 
of such a market.  
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Figure 8 : Mean Pricing Bias, Lambda = 1 

 
 

Figure 9 : Mean Pricing Bias, Call Options, Detail at Low Jump Volatility 

 
 

Figures 8 and 9 show the mean pricing bias increasingin magnitude with 
higher jump volatility, as the traders drive the market price far from the pure 
Black-Scholes theoretical price. The pricing bias, or difference between 
market price and theoretical Black-Scholes price, was averaged over 500 
market runs. Moving away from the basic Black-Scholes calculation implies 
that another force besides underlying asset volatility (sigma) is impacting the 
traders. In this case, that force must be jump diffusion destabilizing the 
market. 
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Figure 10 : Best Judgement, Lambda = 1 

 
 

Figure 11 : Best Judgement, Lambda=1, Detail at Low Jump Volatility 

 
 

Figures 10 and 11 show the best judgement value, which is the judgement 
value applied by the trader that ends up with the highest profit at the end of a 
market run, averaged over 500 market runs. The best judgement value quickly 
hits the ceiling of 3.01 as jump volatility increases. As early as jump 
volatility=0.04, best judgement is at the maximum allowed by the pricing 
model. This result indicates an attempt to increase the price due to the 
additional volatility. Best judgement shows another reason why the presence 
of jump diffusion can be considered toxic. 
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Figure 12 : Pricing Bias Standard Deviation, Lambda=1 

 
 

Figure 13 : Pricing Bias Std Dev, Lambda=1, Detail at Low Jump Volatility 

 
 

Figures 12 and 13 show the standard deviation of pricing bias also increases 
with jump volatility, which means the traders spread the market price farther 
apart as they try to use Black-Scholes in the presence of jump diffusion. 
Entering a market with high pricing bias standard deviation means traders find 
it difficult to pinpoint a successful price.   

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

P
ri

ci
n

g
 B

ia
s 

S
td

 D
e

v

Jump Volatility

0.05

0.1

0.25

Sigma:

0

2

4

6

8

10

12

14

16

18

20

0 0.02 0.04 0.06 0.08 0.1

P
ri

ci
n

g
 B

ia
s 

S
td

 D
e

v

Jump Volatility

0.05

0.1

0.25

Sigma:

16

Undergraduate Economic Review, Vol. 11 [2015], Iss. 1, Art. 14

https://digitalcommons.iwu.edu/uer/vol11/iss1/14



 
 
   

 

 17

Figure 14 : Kurtosis Compared to Other Jump Diffusion Metrics at Low 

Jump Volatility 

 

 
 

For the four graphs in Figure 14, the market type was a call options market 

and sigma was 0.1. The "MVV delta" line subtracted mean kurtosis when 

lambda was 1 from mean kurtosis when lambda was 0 under these conditions. 

Each “delta” line likewise subtracted its respective value when lambda was 1 

from the value when lambda was 0 under these conditions. Distance from the 

x-axis represents how strongly the plotted variable is affected by lambda's 

presence under a given jump volatility value. All of these variables increase 

with jump volatility, as kurtosis does. However, kurtosis increases more 

smoothly and decisively than any of the other variables. Although all of the 

values can detect the presence of lambda to some degree, mean kurtosis is the 

clearest and strongest indicator. "MVV delta" curves upward in a smooth plot, 
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kurtosis, none of the other variables shown here besides kurtosis can be 

analyzed by an individual trader. 

The put market data displays results similar to the call option data analyzed 

above. Whether the market involves call or put options, jump diffusion 

ultimately has the same effect of unbalancing the market. Since the put market 

data is largely similar to the call option data, it was not graphed in this paper. 

4.3 Error Analysis 

For a call options market under a lambda of 1 and a sigma of 0.5, the 
R2 value for a binomial approximation of mean kurtosis was 0.984. This 
means that the plot of mean kurtosis was very consistent and accounted for 
98.4% of the variation in the plot. For comparison, in a call options market 
under a lambda of 1 and a sigma of 0.5, plotting mean pricing bias gave an R2 
value of 0.917. Although mean pricing bias clearly increases with jump 
diffusion, kurtosis yields a more consistent association than mean pricing bias. 
Kurtosis has a superior association compared to other metrics such as pricing 
bias standard deviation and best judgement as well. Additionally, regarding 
number of market runs used to compute results, the intent of the study was to 
determine trends rather than boundaries. Therefore, 500 market runs was 
deemed enough to provide a clear indication of market behavior. Furthermore, 
preliminary testing with 500 market runs yielded expected patterns under a 
Black-Scholes system. 
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4.4 Simulation Data Examples 

Table 2 : Call Market Data, Averaged from 500 Simulated Market Runs 

Input Output 

Lambda 

Jump 

Volatility Sigma 

Mean 

Kurtosis 

Max-

Min Avg 

Profit 

Mean 

Pricing 

Bias 

Pricing 

Bias Std 

Dev 

Best 

Judge-

ment 

1 0.00 0.05 -0.003 0.093 -1.203 2.851 0.674 

1 0.10 0.05 131.711 1.009 -0.889 5.416 3.010 

1 0.20 0.05 183.632 2.493 -1.334 11.791 3.010 

1 0.40 0.05 229.790 4.516 -2.509 19.266 3.010 

1 0.60 0.05 247.153 7.766 -8.147 43.586 3.010 

1 0.80 0.05 266.455 9.693 -11.972 71.175 3.010 

1 1.00 0.05 276.654 7.062 -7.657 64.433 3.010 

1 0.00 0.10 0.003 0.370 -2.104 5.795 1.764 

1 0.10 0.10 64.431 1.015 -1.499 7.348 3.010 

1 0.20 0.10 127.966 1.855 -1.569 10.904 3.010 

1 0.40 0.10 197.802 4.194 -3.042 27.954 3.010 

1 0.60 0.10 225.937 5.625 -4.701 38.681 3.010 

1 0.80 0.10 254.145 9.806 -8.930 65.498 3.010 

1 1.00 0.10 259.436 4.630 -9.099 111.802 1.632 

1 0.00 0.25 0.024 1.302 -5.244 15.426 1.764 

1 0.10 0.25 11.249 1.391 -3.977 17.123 2.667 

1 0.20 0.25 46.756 1.651 -3.769 20.010 2.045 

1 0.40 0.25 114.185 4.972 -5.112 35.894 3.010 

1 0.60 0.25 161.081 7.615 -8.905 56.111 2.836 

1 0.80 0.25 191.812 6.510 -13.826 84.826 3.010 

1 1.00 0.25 210.432 7.787 -12.707 114.777 2.346 

0 0.00 0.05 0.010 0.105 -1.122 2.906 1.048 

0 0.10 0.05 0.005 0.116 -1.067 3.076 0.674 

0 0.20 0.05 0.015 0.128 -1.095 2.766 0.851 

0 0.40 0.05 0.016 0.116 -0.996 2.894 0.594 

0 0.60 0.05 -0.001 0.183 -1.149 3.114 1.505 

0 0.80 0.05 0.012 0.178 -1.208 3.015 1.154 

0 1.00 0.05 -0.018 0.091 -1.143 2.909 0.594 

0 0.00 0.10 0.011 0.132 -1.848 5.825 0.594 

0 0.10 0.10 -0.006 0.116 -1.534 5.486 0.674 

0 0.20 0.10 -0.004 0.194 -1.714 5.204 0.760 

0 0.40 0.10 -0.012 0.229 -1.597 5.338 1.048 

0 0.60 0.10 0.016 0.260 -1.672 5.571 1.632 

0 0.80 0.10 -0.006 0.200 -1.845 5.141 1.048 

0 1.00 0.10 0.010 0.289 -1.988 5.446 1.505 

0 0.00 0.25 0.030 0.382 -3.760 15.044 0.674 

0 0.10 0.25 0.013 0.432 -3.618 13.215 1.902 

0 0.20 0.25 0.028 0.424 -2.923 13.339 0.594 

0 0.40 0.25 0.016 0.460 -3.814 14.965 0.674 

0 0.60 0.25 0.004 0.740 -4.520 15.249 1.154 

0 0.80 0.25 0.004 0.632 -3.958 14.492 0.760 

0 1.00 0.25 0.020 0.421 -3.259 13.684 0.947 
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Table 3 : Put Market Data, Averaged from 500 Simulated Market Runs 

Input Output 

Lambda 

Jump 

Volatility Sigma 

Mean 

Kurtosis 

Max-

Min Avg 

Profit 

Mean 

Pricing 

Bias 

Pricing 

Bias Std 

Dev 

Best 

Judge-

ment 

1 0.00 0.05 -0.011 0.069 -0.364 1.685 1.764 

1 0.10 0.05 129.689 1.057 -0.265 3.606 3.010 

1 0.20 0.05 188.622 1.934 0.092 5.862 3.010 

1 0.40 0.05 234.062 4.714 -0.813 11.415 3.010 

1 0.60 0.05 251.238 6.795 -3.706 15.006 3.010 

1 0.80 0.05 256.487 8.403 -7.639 17.362 3.010 

1 1.00 0.05 268.562 8.535 -8.476 18.223 3.010 

1 0.00 0.10 -0.011 0.150 -0.884 4.064 0.519 

1 0.10 0.10 59.814 0.957 -0.957 5.524 3.010 

1 0.20 0.10 129.481 2.150 -0.203 7.136 3.010 

1 0.40 0.10 192.369 4.481 -2.084 11.506 3.010 

1 0.60 0.10 217.752 7.376 -4.206 15.266 3.010 

1 0.80 0.10 242.483 9.062 -6.946 18.152 3.010 

1 1.00 0.10 248.351 9.285 -8.239 18.152 3.010 

1 0.00 0.25 0.019 0.326 -3.434 9.643 0.947 

1 0.10 0.25 9.709 1.016 -3.118 9.814 1.383 

1 0.20 0.25 46.167 1.743 -2.448 10.408 2.193 

1 0.40 0.25 116.153 3.551 -2.753 14.218 3.010 

1 0.60 0.25 160.431 5.740 -3.881 15.519 3.010 

1 0.80 0.25 188.525 7.722 -6.968 18.234 3.010 

1 1.00 0.25 225.169 8.956 -10.795 20.049 3.010 

0 0.00 0.05 0.000 0.065 -0.437 1.815 1.505 

0 0.10 0.05 -0.012 0.037 -0.449 1.726 0.674 

0 0.20 0.05 0.005 0.051 -0.375 1.608 3.010 

0 0.40 0.05 0.006 0.044 -0.308 1.599 0.519 

0 0.60 0.05 -0.003 0.036 -0.283 1.631 0.519 

0 0.80 0.05 -0.007 0.081 -0.368 1.665 1.764 

0 1.00 0.05 -0.014 0.079 -0.535 1.731 2.667 

0 0.00 0.10 0.004 0.144 -1.249 3.781 1.266 

0 0.10 0.10 0.001 0.092 -0.898 3.674 0.674 

0 0.20 0.10 -0.007 0.082 -0.776 3.552 0.594 

0 0.40 0.10 -0.002 0.265 -1.246 3.984 1.632 

0 0.60 0.10 -0.014 0.163 -1.084 3.668 1.505 

0 0.80 0.10 0.012 0.153 -1.131 3.841 2.045 

0 1.00 0.10 0.014 0.120 -1.061 3.796 1.266 

0 0.00 0.25 0.006 0.277 -2.609 8.863 0.851 

0 0.10 0.25 0.005 0.273 -2.931 9.036 0.851 

0 0.20 0.25 0.016 0.440 -3.039 9.208 1.383 

0 0.40 0.25 0.014 0.302 -3.125 9.488 0.851 

0 0.60 0.25 0.018 0.389 -2.425 8.385 0.674 

0 0.80 0.25 0.007 0.254 -2.346 8.874 0.674 

0 1.00 0.25 0.016 0.447 -2.934 9.346 1.154 
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5. Conclusions 

5.1 Discussion 

Comparing sigma, jump volatility, pricing bias, average profit 
variables, and best judgement, a few conclusions can be drawn. The difference 
between maximum and minimum average profit increases with jump 
volatility, which means that trader profits become more spread out with jump 
diffusion. The fact that the standard deviation of mean pricing bias increases 
with jump volatility reinforces this result. The absolute value of mean pricing 
bias also rises with jump volatility, signifying how the market moves away 
from the basic Black-Scholes calculation when jump diffusion is present. Best 
judgement likewise increases greatly, as the best price moves away from the 
basic Black-Scholes calculation. As noted in earlier work [22], higher jump 
volatility increased the best judgement value. In other words, traders who set 
the price of options as higher than their vanilla Black-Scholes result 
unwittingly incorporated the concept that higher jump volatility should make 
the price of the options increase, which made traders with higher judgement 
more successful. All of these results, taken from values unknowable to traders 
or unknown until the end of a market run (option contract period), signify how 
jump diffusion makes an options market much more unpredictable, causes 
trading difficulties, and thus is considered "toxic."  

 
A substantial result of this work is the discovery that kurtosis, or 

volatility of volatility, among all the measures of market behavior, is a precise 
detector of the presence of jump diffusion. When lambda was 0, and therefore 
when there were no jumps in the market, the mean kurtosis stayed close to 0 as 
well, never going over 0.05 or under -0.05. When lambda was 1, the mean 
kurtosis was higher than 0.05 with a jump volatility of 0.02 or greater. Under a 
sigma value of 0.05 and a jump volatility value of 0.1, mean kurtosis climbed 
as high as 131.71, much larger than the value of 0.0055 that accompanied a 
lambda of 0. Furthermore, mean kurtosis was more sensitive than mean 
pricing bias or other market measurements at detecting jump diffusion. From 
these results, it is clear that calculating mean kurtosis consistently detects 
whether a market contains jumps if there is even a small amount of jump 
volatility. Therefore, mean kurtosis, which can be calculated from the 
underlying asset price like sigma, can be used as a clear and consistent 
indicator of jump diffusion. Such an indicator can be used to avoid the toxic 
market effects of jump diffusion.  

 
Thus, the results supported the hypotheses. As these results show, 

agent-based modeling using NetLogo can successfully depict traders using the 
Black-Scholes formula in an options market subject to jump diffusion, and 
exhibit market behavior useful for analysis and for helping to understand the 
complex interactions of the options market. Increasing jump diffusion results 
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in measurably "toxic markets" that impair traders’ ability to successfully use 
the Black-Scholes formula. The kurtosis of an underlying asset price can 
signal if an options market is toxic by detecting whether jump diffusion is in 
effect. 

5.2 Future Directions 

Additional useful information could be found by measuring the 
analyzed variables at different values of lambda. As lambda increases and the 
jumps become more regular, jump diffusion can “set a new sigma.” Therefore, 
it would be useful to test the model at higher lambda values to determine 
whether kurtosis remains effective. In this case, the market could be analyzed 
to find if jump diffusion eventually replaces sigma to the extent that the 
market becomes safe. Real world options markets could be further explored to 
test the robustness of kurtosis and determine if other variables may give the 
kurtosis a "false alarm" in its measure of jump diffusion. Other possibilities 
include making use of the additional behavior rules available in the NetLogo 
platform to model more complex trader behaviors, or developing a 
mathematical description of the price similar to Black-Scholes but 
incorporating kurtosis.  
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