Apr 18th, 11:15 AM - 11:30 AM

Effects of the fa Mutation on the Leptin Receptor

Jean Schoening
Illinois Wesleyan University

Yanping Wang
Illinois Wesleyan University

Heinz Baumann, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Schoening, Jean; Wang, Yanping; and Baumann, Faculty Advisor, Heinz, "Effects of the fa Mutation on the Leptin Receptor" (1998). John Wesley Powell Student Research Conference. 4.

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
EFFECTS OF THE \textit{fa} MUTATION ON THE LEPTIN RECEPTOR

Jean Schoening, Yanping Wang, and Heinz Baumann*
Department of Biology, Illinois Wesleyan University and
Department of Molecular and Cellular Biology,
Roswell Park Cancer Institute

Leptin, a hormone released by adipocytes and involved in the regulation of energy, binds to the leptin receptor (OB-R). The activated OB-R induces the phosphorylation of the receptor itself and Janus kinases (JAKs). The JAKs then activate Signal Transducer and Activator of Transcription (STAT) proteins which translocate to the nucleus to regulate genes. A result of a single amino acid substitution, the \textit{fatty} mutation of OB-R (OB-R\textit{(fa)}) is found in the extracellular domain of the receptor. This mutation leads to an obese phenotype in homozygous \textit{fa/ fa} rats. Preliminary experiments suggest that the \textit{fatty} mutation may cause deficiencies in the signal transducing capabilities of the receptor. The goal of this study was to identify the precise signaling function of the OB-R\textit{(fa)}.

Human kidney 293 cells were generated that stably express either the wild type OB-R (OB-R\textit{(wt)}) or OB-R\textit{(fa)}. These stable cells exhibited significantly increased ligand binding relative to the parental cell line. When treated with leptin, both OB-R\textit{(wt)} and OB-R\textit{(fa)} cells indicate an increase in STAT1 and STAT3 activity. The OB-R\textit{(fa)} cells exhibit an increase in the basal level of DNA binding activity in the absence of leptin. The constitutive activity of OB-R\textit{(fa)} was verified with gene induction experiments. In addition, leptin treatment also activates the SHP-2 protein tyrosine phosphatase, which is predicted to down-regulate OB-R signaling. This finding is in contrast to the previous report that suggested SHP-2 is not part of OB-R signaling. These results demonstrate that OB-R\textit{(fa)} alters the function of the receptor by introducing a ligand-independent signal transduction, suggesting that the \textit{fatty} phenotype is mechanistically distinct from the \textit{diabetes} mutation of OB-R which causes a signal incompetent receptor.

References: