The Hyoid Morphology of *Tarsius syrichta*: Implications on Phylogeny

James D. Erickson  
*Illinois Wesleyan University*

Thomas Griffiths, Faculty Advisor  
*Illinois Wesleyan University*

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

https://digitalcommons.iwu.edu/jwprc/1996/posters/8

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.  
©Copyright is owned by the author of this document.
THE HYOID MORPHOLOGY OF TARSIUS SYRICHTA: IMPLICATIONS ON PHYLOGENY

James D. Erickson and Thomas Griffiths*, Department of Biology, IWU

Of two major divisions in the primate order, the suborder Anthropoidea contains members whose physical characteristics are more derived while members of the suborder Strepsirhini have more primitive characteristics. The determination of the phylogenetic relationship of one primate family, the Tarsiidae, has been somewhat elusive due to its complement both of primitive and derived traits. Thus, placement of the Tarsiers into either of the two suborders has been difficult. We examined the hyoid morphology of one representative species, Tarsius syrichta, and searched for clues to ancestry among the arrangement, shape, and attachment of hyoid bones and muscles. By comparing the character states we observed in the specimen with literature descriptions of other primates from both suborders and using phylogenetic computer software, we hoped to gain insight into the Tarsier’s relationship within one of the two suborders. Interestingly enough, our data did not assist us in placing the Tarsier family into either suborder but instead reflected its equal relation to both suborders. This might suggest that a third suborder is appropriate to explain the place of the Tarsier family, a suborder which deviated from an ancestor common to the other suborders.