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INTRODUCTION 

Asian options are a class of exotic derivatives that use an averaging 

procedure to generate their payoff. Typically, the average value of the stock price 

is calculated over the life of the option and compared to a fixed strike price at the 

time of exercise.1 Both geometrically averaged and arithmetically averaged options 

are traded in the market, but arithmetic averaging is more common despite being 

analytically intractable (Lakhlani 2013). This has spurred the development of many 

procedures for estimating the price of arithmetic Asian options, but Monte Carlo 

simulation remains the benchmark without a closed form solution.  

The popularity of Asian options in the over-the-counter (OTC) market 

stems from two characteristics of their payoff. First, because their payoff is 

structured by the average of the underlying price, investors reduce their exposure 

to the risk of price manipulation near option maturity. Second, the averaging 

procedure reduces the volatility in expected payoff compared to a vanilla European 

option. This combination of features makes these options particularly well suited 

for hedging exposure in currency markets or thinly traded commodity markets, 

where they are most popular (Mraovic and Zhang 2014).  Conveniently, this 

smoothing effect also results in cheaper option premiums, a result demonstrated by 

Figure 1. The relative cheapness of these contracts also makes Asian options more 

attractive to corporate financiers.  

While Asian options reduce the impact of localized volatility upon the 

payoff, the selection of a volatility model is relevant to pricing accuracy because 

these options are strongly path-dependent. Models of asset prices differentiate 

themselves based on how they handle volatility (Bollerslev et al. 1992). Not 

predicting a short period of particularly high or low volatility (such as in events like 

the “Flash Crash” of 2011) is unlikely to significantly affect the final payoff, but 

poor model specification is relevant across the life of the option. Errors accumulate 

and propagate, sending the average 'off-track,' resulting in poor pricing accuracy 

and potentially significant losses (Bollerslev and Mikkelsen 1999). Therefore, 

generating a more accurate forecast of volatility will produce a more accurate 

option premium. 

The pricing accuracy of different models can be examined with historical 

data. Splitting the data into a training set and a validation set provides a benchmark 

for comparison. First, volatility forecasts are created to price the options, and then 

the option pricing models are re-run with the true underlying parameters observed 

over the period that the option would have been active. The goal of this estimation 

is to discover how significant pricing errors can be when using market data.  

 

                                                      
1 While "floating-strike" Asian options exist, they are less commonly traded (Alziary 1997). 
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Figure 1: Premium comparison of Asian and vanilla options. 

This paper is organized as follows: Section 2 reviews the current literature 

concerning Asian option pricing procedures. Section 3 provides the theoretical 

framework used to generate the pricing algorithm. Section 4 details the simulation 

methodology and the data used to generate the results that are analyzed in Section 

5. Concluding remarks are presented in Section 6. 

 

LITERATURE REVIEW 

The primary complication in pricing arithmetic Asian options is that the sum of 

finitely many log-normal random variables has no closed form solution (Alziary et 

al. 1997). In general, the sum of two probability distributions is calculated using 

the convolution integral of their respective characteristic functions, but a closed 

form representation for the characteristic function of the log-normal distribution is 

unknown (Fenton 1960). While infinite summation methods exist, these are only 

approximations because the averaging frequencies seen in the market are not 

continuous. Oil options, for instance, are typically averaged daily or monthly (Levy 

1992). Furthermore, numerical integration of the sums is difficult due to the tail 

behavior of the log-normal distribution (Beaulieu and Rajwani 2004). While 

various lognormal sum approximation methods exist, there does not exist one 

method that is “best” across the entire distribution (Mehta et. al. 2007). Others have 
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tried to directly approximate the option payoff, and the most common technique is 

to use some implementation of the Lévy lognormal approximation. In addition, 

P.D.E. methods and more exotic techniques exist, but they usually require extra 

restrictions to be placed on the options contract (Alziary et al. 1997). However, 

virtually every approximation method uses Monte Carlo simulation as its 

benchmark, so this paper will focus only on direct simulation. For a detailed 

comparison of the accuracy of these approximation methods in the context of Asian 

option prices, see Hsu and Lyuu (2011) and Nielson (2001).  

THEORETICAL FRAMEWORK 

Consider a continuous time economy where 𝑇 is the maturity date of an option 

contract. This economy has at least two assets that do not pay dividends: a risk-free 

asset earning a return 𝑟, and a risky asset. Asian option contracts can be written on 

this risky asset with a fixed strike price of 𝐾, and these contracts can be exercised 

at time 𝑇. The market information available at the current time 𝑡 is represented by 

the filtration ℱ𝑡, where  ℱ𝑡 is a 𝜎-algebra of subsets of the sample space Ω, which 

in this case is any possible price the asset could take on at a given point in time 

(Lawler 2014). Let the price of the risky asset be an integrable random variable 𝑆𝑡 

where 𝑆𝑡 is ℱ𝑡 measurable. Let 𝐴𝑇 be the average price over the life of the option 

(the averaging period). Now define 𝜓𝑡,𝑖 to be a sequence of probability spaces (Ω
, ℱ𝑡,𝑖, P𝑡,𝑖), where 𝑖 is a natural number indexing an individual realization of the 

time-path of an asset price (each probability space will be represented by a single 

price path in the simulation). The following diagram neatly represents the pricing 

process two representations of the pricing process. 

 
Figure 2: Commutative diagram showing the pricing calculation and a two-stage 

decomposition of said process. 

To prevent arbitrage, the price of the option today must be the market’s 

expectation of the payoff at time 𝑇 discounted back to account for the time value 

of money. This payoff is conditioned upon the future prices of the asset, which is 

information not yet present within the market. The best guess of this payoff is 

therefore 𝐸[𝐴𝑇 |ℱ𝑡]. However, the specific path that the asset could follow changes 

as new price information enters the market. Therefore, this conditional expectation 

is itself a random variable. The expected payoff of the option given what is known 

today can be found by taking the (unconditional) expectation 𝐸[𝐸[𝐴𝑇 |ℱ𝑡]] across 

all potential stock price paths, and subtracting the stock price.  
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This composition of expectations can be decomposed into a two-stage 

estimation of the option payoff. Consider 𝜓𝑖,𝑡 as the output of a Monte Carlo 

simulation with 𝑁 price paths (realizations) at 𝜏 time points arranged into an 𝑁 × 𝜏 

matrix. The first stage is to map 𝜓𝑖,𝑡 → 𝜓𝑖 , which outputs an 𝑁 × 1 column vector 

by taking an average for each path across time. Taking the mean of the path 

averages (and subtracting 𝐾) is equivalent to defining a mapping 𝜓𝑖 → 𝑋 to 

generate a point estimate for the option payoff, which is adjusted for the time-value 

of money to price the option.  The next stage is to generate the 𝑁 × 𝜏 output of the 

simulation.  

The price of a call and a put can be expressed as  

𝑐 =  𝑒−𝑟(𝑇−𝑡)𝐸[(A𝑇 − K)+] 

𝑝 =  𝑒−𝑟(𝑇−𝑡)𝐸[(K − A𝑇)+], 

where 𝐴 is the arithmetic average of the stock price, and 𝐸 denotes the expectation 

under a risk-neutral measure (discarding negative payoffs). The task at hand is to 

generate 𝑆𝑡 at discrete time nodes. According to geometric Brownian motion, the 

stochastic differential equation that models stock prices is  

𝑑𝑆 =  𝜇𝑆𝑑𝑡 +  𝜎𝑆𝑑𝑊𝑡, 

where 𝜇 is the (annualized) expected return to the stock, 𝜎 is the (annualized) 

volatility, and 𝑑𝑊𝑡 is a Wiener process. It follows from Girsanov’s theorem and 

the Novikov sufficient condition that a change of measure to a risk-neutral 

probability measure allows us to substitute 𝜇 with 𝑟 to price the option (Steele 

2001). Then by applying Ito’s lemma and setting the relevant function of 𝑆 to ln (𝑆), 

the change in the log stock price is 

ln(𝑆𝑡) − ln (𝑆𝑡−1) = (𝑟 −  
1

2
𝜎2) 𝑑𝑡 +  𝜎𝑑𝑊𝑡. 

This implies that in in discrete time 

𝑆𝑡 = 𝑆𝑡−1 ∙ 𝑒(𝑟− 
1

2
 𝜎2)∆𝑡+ 𝜎𝑧√∆𝑡

. 

THE GREEKS 

Without a closed form pricing solution, the Greeks of an arithmetic Asian option 

must be computed numerically. In discrete time, the partial derivative is a partial 

difference. This paper focuses on two Greeks, Delta and Vega, as these highlight 

the primary difference between Asian and vanilla options. 

 

 
(1) 

(2) 

(3) 

(4) 

(5) 
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The delta of an option measures its sensitivity to changes in the price of the 

underlying asset. Vanilla European options have a closed form expression for delta. 

The same cannot be said for (arithmetic) Asian options. A plot comparing the deltas 

of otherwise identical vanilla and Asian call options is below. The delta of an option 

is also a common proxy for the probability of exercise among options traders. The 

two deltas initially cross at the risk-free rate adjusted strike price, which is the at-

the-money price, implying that they have the same probability of exercise here 

when the option is first written. The plot reveals an important concern for traders 

of Asian options, which is that the option is more sensitive to initial moneyness 

than its vanilla counterpart. 

 
Figure 3: Deltas of two otherwise equivalent call options. 

An option that begins significantly out of the money is less likely to be 

exercised, as it will likely accumulate subsequent “averaging days” that are also out 

of the money. This explains why the option contracts are cheaper; if they were not 

then arbitragers could make a profit offsetting their long positions by shorting Asian 

options that are significantly out of the money. A corollary of this effect is that the 

option is less sensitive to price manipulation; if counterparties seek to gain a profit 

by market manipulation, then it becomes significantly more expensive to engage in 

this manipulation because abnormal trading volumes must be sustained across the 

life of the option rather than just before exercise.  
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Turning now to volatility, vega denotes the sensitivity of the option price to 

changes in volatility in the underlying asset. Asian options demonstrate, ceteris 

paribus, a lower vega than their vanilla counterpart. This is demonstrated by the 

plot below of otherwise identical call options. 

 
Figure 4: Vegas of two otherwise equivalent call options. 

Outside of the low volatility range, vega tends to not have much curvature 

(particularly for Asian options), which is useful for vega hedging because even the 

presence of conditional heteroscedasticity is unlikely to significantly affect the 

option’s vega. In the plot above, a 1% change in volatility will result in 

approximately a 22-cent change in the option premium whether the underlying’s 

volatility is 20% or 60%. This implies that vega can be interpreted as the ‘cost’ of 

poor volatility forecasting. A higher vega implies a higher unit cost to an error in 

the volatility forecast used to price the option. However, even a low vega should 

not be underestimated, particularly in the highly-leveraged markets where Asian 

options are most popular. As a quick back of the envelope calculation, consider 

that, per these simulations, a reasonable vega for a currency near parity with USD 

is 0.001 per dollar of exposure on a 3 month, daily averaged contract. NASDAQ 
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forex option lots are written on 10,000 dollars of the underlying currency and have 

a position limit of 600,000 contracts. On a position a tenth of this size, every percent 

error in the volatility forecast would be responsible for $600,000 worth of pricing 

error.  

 

METHODOLOGY 

Monte Carlo simulation does not require a closed form solution for the pricing 

function, which makes it a natural choice to deal with sums of lognormal random 

variables. Unfortunately, simulations can only provide estimates of the true value 

for the option price. For a point estimate provided by a run of the simulation, the 

standard error of the option price is on the order of 
1

√𝑁
 where 𝑁 is the number of 

simulations (Mraovic and Zhang 2014). As √𝑁 grows more slowly than 𝑁, large 

numbers of simulations are required to generate accurate results. The variance in 

the option price is approximately one to two cents when using 100,000 price paths. 

As the Monte Carlo simulation imposes no restriction on the nature of the option 

contract, it is assumed that the averaging period and the maturity period of the 

option are identical (as opposed to forward and backward starting options (Alziary 

1997)), that options can only be exercised at maturity, and that all options are at the 

money at the beginning of the maturity period. All contracts have a maturity and 

averaging period of three months, with daily averaging. Option contracts are priced 

assuming a lot size of a single unit of the underlying stock.  

Historical financial data was used to calculate the relevant option 

parameters. This paper utilizes three years of daily closing stock prices, beginning 

on January 2, 2001 and ending on January 2, 2004. This stock data was sourced 

from a Bloomberg terminal for a variety of randomly chosen stocks. All stocks 

during this period were screened to ensure the presence of ARCH effects, and the 

three-month period after January 2, 2004 did not exhibit any notable regime 

changes in the market. After screening the stock tickers, seven suitable stocks 

remained: CS (Credit Suisse), M (Macy’s), MDT (Medtronic), NCR (NCR 

Corporation), POT (Potash Corporation of Saskatchewan), WFC (Wells Fargo), 

and WFT (Weatherford International). These companies all trade on the New York 

Stock Exchange but represent a variety of different industries, from financial 

services (CS and WFC) to computer hardware (NCR) to chemicals (POT). The risk-

free rate is defined here as the average of the daily one month Treasury constant 

maturity rate, with data sourced from FRED.  

 Since the Black Scholes model assumes volatility is constant, three constant 

volatility estimates are generated from this data. The first is historical volatility, 

which is the most straightforward means of estimating volatility. Let 𝜁𝑡 represent 

the time series of daily returns for a stock over the three-year training period. Then 

the historical volatility is 
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𝜎ℎ =  √252√Var(𝜁𝑡). 

Unfortunately, historical volatility is a backwards looking estimate, which provides 

cause for concern when attempting to predict future asset volatility. A common 

method of generating a forward-looking volatility estimate is to use GARCH (1,1), 

which conveniently also can output a constant volatility estimate. The GARCH 

volatility equation is  

𝜎𝑡
2 =  𝛼0 +  𝛼1𝑋𝑡−1

2 +  𝛽1𝜎𝑡−1
2 , 

where 𝑋𝑡 is a white noise process (Posedel 2005). Restricting 0 ≤ 𝛼1, 𝛽1 < 1 

implies that 𝜎𝑡 is integrable and positive semi-definite. Furthermore, a constant 

estimate of volatility can be estimated by computing 

𝛼0

1 − 𝛽1 − 𝛼1
, 

which is used in this paper. Finally, the “true” volatility is computed in the same 

manner as historical volatility, but instead uses the three months of data held back 

from the training set. 

 

RESULTS 

Differences in volatility models resulted in severe mismatches in option premium 

estimates, as shown by the table of results below. Two stocks, Credit Suisse (CS) 

and Wells Fargo (WFC), highlight the dangers of poor volatility forecasting 

performance. For Credit Suisse, the historical volatility estimate resulted in option 

pricing errors upwards of $0.80 per unit of stock. Options written on WFC that 

were priced using historical volatility were nearly double the cost of options priced 

using GARCH (1,1), which offered a substantially better prediction of future 

volatility. For some stocks, neither historical volatility nor GARCH offered 

accurate volatility predictions. Volatility forecasting error for Macy’s (M) resulted 

in approximately $0.40 pricing error for both forecasting methods, with historical 

volatility overestimating the option premium (and therefore volatility), and 

GARCH underestimating the options premium. M also highlights the risk of 

underestimating the impact of vega. Vega for this stock is relatively low, at only 3 

cents per 1% error in volatility (for reference, the vega on an otherwise identical 

vanilla option is just over 5 cents). However, the historical volatility estimate is 

39.4%, the GARCH volatility estimate is 13.5%, while the true volatility observed 

over the life of the option was 27.1%. Such large mismatches in volatility estimates 

explains most of the pricing error when taking even this low vega into account.  

 

(6) 

(7) 

(8) 
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 These results suggest that investors interested in pricing Asian options 

should carefully review risk management practices that relate to sources of model 

error. While GARCH(1,1) will be sufficient for some stocks (here consider WFC 

and WFT), these results clearly demonstrate that when volatility models fail, the 

cost of failure is high. While in these experimental conditions there is a true 

benchmark for volatility estimates, this not the case when trading, so errors will 

only be realized after the fact.  

 
Figure 5: Table of results displaying simulation output from 100,000 realizations 

per item. 

 

CONCLUSION 

Losses from model error can be significant; banks across the globe have historically 

lost upwards of 80 million dollars due to the modeling errors from even a single 

trader (Economist 1997). While Asian options hedge local volatility, they remain 

sensitive to the quality of one’s forecasts. The risks are higher for OTC options 

trading because it tends to deal in significantly higher volumes than retail traders 

can afford, which means that even small errors can quickly scale up. Path dependent 

options are particularly vulnerable to this source of error as volatility modeling 
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controls price-path behavior of the asset, quickly sending estimated prices off 

course. The risk is especially relevant for Asian options as they are the most 

commonly traded in currency and commodity markets where leverage amplifies 

minor pricing errors. These results show that major losses can be experienced even 

in the relative simplicity of a Black Scholes world, which cannot account for even 

larger sources of loss that could be exposed by models incorporating regime 

switching and stochastic volatility. Therefore, the first step for market actors 

seeking to price Asian options should be to select a robust and trusted volatility 

model.  
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