John Wesley Powell Student Research Conference 1996, 7th Annual JWP Conference

Apr 13th, 1:30 PM - 2:30 PM

Synthesis of New Possible Fingerprint Detection Agents

Robert A. Hitchcock
Illinois Wesleyan University

Forrest Frank, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc


This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
Even in the age of forensic evidence such as DNA fingerprinting, the latent fingerprint remains the most highly regarded type of physical evidence. Therefore, the ability of criminal investigators to develop these fingerprints and identify the suspect is extremely important. Latent fingerprints consist of palmar sweat and other body chemicals that yield amino acids. In most cases, a developing agent is reacted with the amino acids to produce a new compound which is often visible under a specific wavelength of light. This allows the print to be visualized, and the suspect to be identified.

The most popular compound used as a developing agent is ninhydrin (1). However, ninhydrin has flaws. For example, ninhydrin has a very low sensitivity, which means that some people will not excrete enough perspiration to leave an identifiable print. For this reason, a search for new developing agents is important.

Since ninhydrin has so many useful properties, one method of synthesizing a new developing agent is through ninhydrin analogues. This method allows the combination of ninhydrin with other compounds which may eliminate some of ninhydrin's faults. Our research involved the synthesis of two ninhydrin analogues: 6-oxo-2,4-dithio-1,2,3,4-tetrahydro-6H-indeno[2,1-g]pteridine (2). and 1,3-dimethyl-2,4,5-trioxo-1,2,3,4-tetrahydro-6H-indeno[2,1-g]pteridine (3). Both compounds have been successfully synthesized.