Harmonic Oscillation in the Presence of Multiple Damping Forces

Chris Pelto
Illinois Wesleyan University

Keith Coates, Faculty Advisor
Illinois Wesleyan University

Narendra Jaggi, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Pelto, Chris; Coates, Faculty Advisor, Keith; and Jaggi, Faculty Advisor, Narendra, "Harmonic Oscillation in the Presence of Multiple Damping Forces" (1997). John Wesley Powell Student Research Conference. 18.
https://digitalcommons.iwu.edu/jwprc/1997/posters/18

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
HARMONIC OSCILLATION IN THE PRESENCE OF MULTIPLE DAMPING FORCES

Chris Pelto, Keith Coates*, and Narendra Jaggi*, Departments of Mathematics and Physics, IWU

The relatively mundane damped harmonic oscillator is found to exhibit interesting motion once under the influence of both a velocity dependent and Coulombic frictional damping force. Data for the decay of the amplitude as a function of time were collected on a specially prepared torsional oscillator with a variable electromagnetic damping mechanism. An analytical solution of the appropriate equation of motion was obtained by the method of Laplace transforms. In both the limits of zero Coulombic friction and zero velocity damping, the solution reduces to the well-known answers to the problem. The solution, when plotted with the correct parameters, fits the numerical solution very well and shows some quantitative agreement with the experimental data.

Scientists and engineers deal with damped oscillating systems on a regular basis. Damping in real world systems is understood in the limiting cases of dominant Coulombic friction and dominant velocity-dependent damping, but the regime encountered when both types of damping are present is not as well understood. The solution which we have found provides an analytic means of modelling a real world system in a regime previously requiring numerical methods of solution. This solution will be immediately useful to several types of scientists, because the harmonic oscillator is found in fields ranging from physics and engineering to chemistry. The solution is likely to be most useful in the field of mechanical engineering, because no electrical analog of Coulombic friction is known to exist. This solution also has significant pedagogical implications, since it addresses a problem which has been ignored in textbooks. All undergraduate texts include the familiar problem of a harmonic oscillator which is experiencing velocity damping, and a few level texts include the case of Coulombic friction damping. The case when both are present has been overlooked, presumably because an analytic solution was not available. The present work advances our understanding of a common physical phenomenon.