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Abstract Abstract 
The perpetual inverse futures contract is a recent and most popularly traded cryptocurrency derivative 
over crypto derivatives exchanges. Exchanges implement a liquidation mechanism that terminates 
positions which no longer satisfy maintenance requirements. In this study, we use regression, stochastic 
calculus, and simulation methods to provide a quantitative description of the wealth/return process for 
holding an XBTUSD contract on BitMEX, examine the funding rate and index price properties, and relate 
liquidation to leverage as a stopping time problem. The results will help investors understand liquidation 
to optimize their trading strategy and researchers in studying the design of crypto derivatives. 
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1 Introduction 

1.1 Overview 

Bitcoin (Ƀ), introduced by Satoshi Nakamoto, is the first decentralized digital currency based on 

blockchain technology (Nakamoto 2008). Since the advent of the first block in 2009, Bitcoin has 

been the leader among digital assets, with the largest market capitalization, and is among one of 

the highest traded commodities. Associated with Bitcoin’s high (and risky) value is high interest 

in speculating on or hedging against its future price movements which have led to a growing 

market for Bitcoin-related derivatives. One crypto derivative that started trading in recent years 

and is quickly dominating several crypto exchanges is the perpetual inverse futures contract. 

Among the Bitcoin derivatives exchanges offering the product, BitMEX generates the highest 

daily trading volume. Launched in May 2016, XBTUSD is BitMEX’s most popular product, 

allowing traders to speculate on the Bitcoin / USD exchange rate with up to 100x leverage, which 

means traders could have a purchasing power of up to 100 times of their own investments. 

The perpetual inverse futures contract is novel. Similar to typical futures options, XBTUSD 

updates profits and losses (P&L) every period (8 hours). In contrast to traditional futures, there is 

no expiry (maturity) for the perpetual option, and the margin and profit/loss are denominated in 

the base currency instead of the quote currency. In XBTUSD, the base currency is Bitcoin, and the 

quote currency is USD (BitMEX, 2020). 

Because of the novelty of perpetual inverse futures, there are very few studies of its characteristics. 

Recent studies have discussed the relationship between the Bitcoin spot market and the futures 

market (Baur & Dimpfl, 2019) and have shown that BitMEX derivatives have positive net spillover 

effects on the spot market (Alexander et al., 2020). Nimmagadda and Sasanka studied the BitMEX 

funding rate, proved its Heteroskedastic nature, and suggested a causal relationship between 

BitMEX funding rates and the USDXBT contract based on Granger causality (2019). Deng et al. 

studied the mean-variance tradeoff of Bitcoin inverse futures, calculated the expectation and 

variance on the contract’s returns (2020), and computed an optimal hedging strategy (2020). 

Despite the exploration of market influences and trading strategies, there is still a lack of 

documentation of the cash flows for holding a position in a contract. To estimate the fair present 

value of a position, whether the contract is underpriced or overpriced, it is essential to understand 

the cash flows. The BitMEX website provides only basic descriptions about XBTUSD’s 

functioning, without offering systematic analysis or formulas on the wealth process. Deng et al. 

build a theoretical model for the evolution of the intrinsic value of the futures (2019), yet the model 

fails to capture the actual realized P&L (similar to dividends) for an investor holding the position. 

Therefore, in this study, we will fill this gap by giving a comprehensive description of the cash 

flows that explains the wealth (return) process for holding a long position on XBTUSD. 

 

 

 

 

 

Figure 1. Liquidation Price in Relation to Bankruptcy Price (Long Position) (BitMEX Simplified, 2018) 
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Figure 2. Liquidation Price in Relation to Bankruptcy Price (Short Position) 

 

Allowing high leverage of up to 100x amplifies both profits and losses of the investor. To avoid 

bankruptcy when investors are trading at high leverage, BitMEX implements a liquidation price 

slightly above (or below, for short positions) the bankruptcy price, as shown in Figures 1 & 2 

(BitMEX Simplified, 2018). When the inverse futures contract price drops to (or rises to, for short 

positions) the liquidation price of the position, BitMEX will cancel any open orders in that contract 

in order to free up margin and maintain the position. If the maintenance margin requirement is 

unsatisfied, the position will be liquidated by the exchange at the bankruptcy price. (Note: Since 

the inverse futures contract price approximates the index price in most time periods, in this paper, 

we adopt the process for index price and evaluate liquidation probabilities under the process for 

index price) 

Relevant studies on cryptocurrency exchanges suggest that BitMEX’s liquidation mechanism 

improves the exchange’s efficiencies (liquidity and risks) and comes as a risk to the investors. Kao 

et al. suggest that the incentive for liquidation mechanisms in Ethereum assets’ Compound 

protocol is to ensure the exchange’s solvency; they also suggest that in an investor’s perspective, 

increased liquidation incentives suppress borrowing demand (2020). Considering the overall 

volatility of the underlying asset, or the index price, it is necessary for the investor to restrict 

maximum leverage (Lee & Cho, 2018). 

It is important for investors to understand the relationship between the liquidation limit and 

leverage so that they can maximize their leverage while keeping a low level of liquidation risk. 

Since no prior study has examined such a relationship, in this study, we model the liquidation price 

as a function of leverage and analyze liquidation probability and expected liquidation time of the 

position. We use the stochastic calculus method to derive formulas for the expected liquidation 

time and the probability of liquidation before a certain time when ignoring funding and fees and 

use simulation to characterize these quantities when considering funding and fees. This will help 

investors evaluate the risks for taking certain leverage and helping develop an optimal trading 

strategy. 

Modeling liquidation risks will also enable us to compare the theoretical value of a contract with 

the actual traded price. Any significant price difference may reflect potential price manipulations. 

In a greater context, this research will further the understanding of designing derivatives exchanges. 

 

The next part of the introductory section introduces all the key terminologies and their features 

used throughout this paper. In the remainder of this paper, Section 2 will offer a quantitative 

description of holding a long position of the XBTUSD contract and provide a regression model to 

characterize the funding rate as a function of index price and the financial market’s performance. 

bankruptcy 

price entry desired travel 

 

liquidation 

price 

3

Wu: A Quantitative Analysis on Bitcoin Perpetual Inverse Futures

Published by Digital Commons @ IWU, 2020



 

We study the long position of XBTUSD contract because the short position scenario is similar and 

that given the liquidation price is less than the initial index price, the long position is uniquely 

interesting with the potential of never getting liquidated when the index price continuously raises. 

Next, in Section 3, we analyze the effects of leverage on liquidation for the long position using 

stochastic calculus methods and simulation. For the scenario without funding and fees, we derive 

the formulas for expected liquidation time and the probability of getting liquidated before a certain 

future time, and provided financial interpretations on the results. For the case with funding and 

fees, we reference relevant constants’ values through regressions on historical data, and then use 

these constants to run simulations on geometric Brownian motion and mean-reverting process 

models. The data we collect from these simulations are used to build regression models to assess 

the expected liquidation time and the probability of getting liquidated before a certain future time, 

and the models are analyzed to provide financial conclusions. Lastly, in Section 4, we summarize 

the results of this research and discuss some remaining questions. 

 

1.2 Key Terminologies & Features 

Table 1. Key Terminologies 

Category Variable Symbol Descriptions 

Contract  

&  

Funding 

Funding Rate (𝑟𝑡) Funding is the primary mechanism to tether to spot price. 

Funding rate is consisted of Interest Rate and the Premium / 

Discount. Funding amount at time 𝑡 is 

𝑓𝑢𝑛𝑑𝑖𝑛𝑔 𝑎𝑚𝑜𝑢𝑛𝑡𝑡  (Ƀ) =  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒𝑡  ×  𝑓𝑢𝑛𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒𝑡 

Index Price (𝑆𝑡) The BitMEX Index Price .BXBT is calculated as a weighted 

average of the XBT Last Price for five constituent exchanges: 

Coinbase (46.98%), Bitstamp (25.73%), Kraken (17.97%), 

Gemini (6.69%), Bittrex (2.63%). 

Since the inverse futures contract price approximates the 

index price in most time periods, we adopt the process for 𝑆𝑡 
and evaluate liquidation probabilities under the process for 𝑆𝑡 

A bitcoin is worth Ƀ 1 = $𝑆𝑡; a contract is worth $1 = Ƀ
1

𝑆𝑡
 

Position Leverage 𝐿 Borrowings from the exchange that amplify gains and losses 

of a position. 𝐿 ∈ [1,100] 

Margin Size 𝑁 It is number of contracts bought with your own money 

initially. The total number of contracts you own is scaled up 

by leverage: 𝑁𝐿. In the following sections, we assume that it 

remains the same until liquidation 

Position 

Value 

(𝑃𝑡) Independent of leverage, this is equal to the notional amount 

of the contracts, i.e. marginal amount scaled up by leverage, 

or “total position size” 
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𝑃𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑠 ×  𝑣𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 = Ƀ
𝑁𝐿

𝑆𝑡
 

𝑒𝑛𝑡𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑃0 = Ƀ
𝑁𝐿

𝑆0
 

Margin 

Account 

Initial 

Margin 

Requirement 

𝐼 To open a position, margin balance must be at least equal to 

the initial margin requirement 𝑀0 ≥ 𝐼, 

𝐼(Ƀ) = (1.00% ×
𝑁

𝑆0
) + (0.075% ×

𝑁

𝑆0
) + (0.075% × 𝑁

𝐿 + 1

𝑆0𝐿
) 

Margin 

Account 

Wallet 

Balance 

(𝑀𝑡) By definition of leverage,  

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑟𝑔𝑖𝑛 𝑀0(Ƀ) =
𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒

𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒
=
𝑃0
𝐿
=
𝑁

𝑆0
 

𝑀𝑎𝑟𝑔𝑖𝑛 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑡 = 𝑊𝑎𝑙𝑙𝑒𝑡 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝑀𝑡 +  𝑈𝑛𝑟𝑒𝑎𝑙𝑖𝑠𝑒𝑑 𝑃𝑁𝐿𝑡 , 𝑡 ≥ 0 

Maintenance 

Margin 

Requirement 

(𝑈𝑡) To maintain a position, one must satisfy 𝑀𝑡 +
 𝑈𝑛𝑟𝑒𝑎𝑙𝑖𝑠𝑒𝑑 𝑃𝑁𝐿𝑡 ≥ 𝑈𝑡, 

𝑈𝑡(Ƀ) = (0.4% ×
𝑁

𝑆0
) + (0.075% ×𝑁

𝐿 + 1

𝑆0𝐿
) + (𝑟𝑡 × 𝑁

𝐿 + 1

𝑆0𝐿
) 

as of Aug 2020, the taker fee is 0.0750% and the base initial 

margin for position sizes < Ƀ 200 is 1.00% 

Liquidation Bankruptcy 

Price 

𝐾 Can be considered as spot price (index price) where “all 

initial margin is lost”. We deduce in Appendix 1 

𝐾($) = 𝑆0 ×
𝐿

𝐿 + 1
=

𝑆0𝐿

𝐿 + 1
 

Liquidation 

Time 

(Stopping 

Time) 

𝜏 The stopping time 𝜏 is when our position gets liquidated by 

BitMEX. It happens when the margin balance goes below the 

maintenance margin requirement. See the exchange’s 

definition in Appendix 2 

𝜏 = 𝑖𝑛𝑓{𝑡 ≥ 0:𝑚𝑎𝑟𝑔𝑖𝑛 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 (Ƀ) < 𝑀𝑀𝑅(Ƀ)} 

= inf {𝑡 ≥ 0:𝑀𝑡 + 𝑁𝐿 (
1

𝑆0
−
1

𝑆𝑡
) < 𝑈𝑡} = inf{𝑡 ≥ 0: 𝑆𝑡 < 𝑆𝑡

𝐿} 

Liquidation 

Price 
𝑆𝑡
𝐿  The index price when the position gets liquidated. 

The liquidation is constant with respect to time when funding 

and fees are ignored and variable when they are considered 

 

 

5

Wu: A Quantitative Analysis on Bitcoin Perpetual Inverse Futures

Published by Digital Commons @ IWU, 2020



 

2 Quantitative Description of BitMEX XBTUSD Contract 

2.1 Wealth Process, Cash Flows, and Liquidation Price of a Long Position 

Assume at time 𝑡 = 0, we enter a long position for 𝑁𝐿 XBTUSD contracts. With leverage 𝐿, we 

only need to pay the price of 𝑁 contracts, that is, $ 𝑁. We are also required to have in the margin 

account at least enough money that satisfies the initial margin requirement, 𝑀0 ≥ 𝐼 . By 

definition of leverage, 𝑀0 = Ƀ
𝑁

𝑆0
. The margin account will be used to pay or receive funding 

amounts at each of the future funding timestamps 𝑡 = 1, 2, 3,… When the funding rate is positive, 

long pays short (we pay), vice versa. The margin balance (𝑴𝒕 +  𝑼𝒏𝒓𝒆𝒂𝒍𝒊𝒔𝒆𝒅 𝑷𝑵𝑳𝒕) has to 

satisfy at least the maintenance margin requirement ( 𝑼𝒕 ) at all times, i.e. 𝑀𝑡 +
 𝑈𝑛𝑟𝑒𝑎𝑙𝑖𝑠𝑒𝑑 𝑃𝑁𝐿𝑡 ≥ 𝑈𝑡; if the margin balance is less than the maintenance margin requirement, 

then the position gets liquidated (we are assuming the position size is < Ƀ 200, if it is greater, the 

exchange would recursively lower risk limits instead of an immediate liquidation). 

If we leave the number of contracts unchanged, and do NOT withdraw from or add in money to 

the margin account, the wealth process and cash flows of the position could be described as 

following. 

 

2.1.1 Wealth Process & Cash Flows 

At time 0, the margin account wallet balance is 𝑀0 = Ƀ
𝑁

𝑆0
 

the position value is      𝑃0 = Ƀ 
𝑁𝐿

𝑆0
 

The initial margin requirement is 

𝐼(Ƀ) = (1.00% ×
𝑁

𝑆0
) + (0.075% ×

𝑁

𝑆0
) + (0.075% × 𝑁

𝐿 + 1

𝑆0𝐿
) 

Assume that no liquidation occurs up to the 𝑛𝑡ℎ funding timestamp, 𝑡 = 𝑛, then 

𝑀𝑛 = 𝑀𝑛−1 −
𝑁𝐿

𝑆𝑛
𝑟𝑛 = 𝑀0 −∑

𝑁𝐿

𝑆𝑖
𝑟𝑖

𝑛

𝑖=1

= Ƀ 
𝑁

𝑆0
−∑

𝑁𝐿

𝑆𝑖
𝑟𝑖

𝑛

𝑖=1

 

𝑃𝑛 = Ƀ 
𝑁𝐿

𝑆𝑛
 

where Ƀ (−
𝑁𝐿

𝑆𝑛
𝑟𝑛) is the funding amount received at 𝑡𝑛. 
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2.1.2 Liquidation Price 

Assuming there are no interests on the margin, the time 0 value of the cash flow up to 𝑡 = 𝑛 is: 

𝔼(𝑉𝑛) − 𝑉0 = 𝔼(𝑃𝑛 +𝑀𝑛) − (𝑃0 +𝑀0) = 𝔼(
𝑁𝐿

𝑆𝑛
+
𝑁

𝑆0
−∑

𝑁𝐿

𝑆𝑖
𝑟𝑖

𝑛

𝑖=1

) −
𝑁𝐿

𝑆0
−
𝑁

𝑆0

= 𝔼(
𝑁𝐿

𝑆𝑛
−∑

𝑁𝐿

𝑆𝑖
𝑟𝑖

𝑛

𝑖=1

) −
𝑁𝐿

𝑆0
= 𝑁𝐿 (𝔼(

1

𝑆𝑛
−∑

1

𝑆𝑖
𝑟𝑖

𝑛

𝑖=1

) −
1

𝑆0
) 

 

The maintenance margin requirement at 𝑡 = 𝑛 is: 

𝑈𝑛(Ƀ) =  (0.4% ×
𝑁

𝑆0
) + (0.075% × 𝑁

𝐿 + 1

𝑆0𝐿
) + (𝑟𝑛 × 𝑁

𝐿 + 1

𝑆0𝐿
) 

Liquidation Means the margin balance goes below the maintenance margin requirement 

𝑀𝑎𝑟𝑔𝑖𝑛 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 =  𝑊𝑎𝑙𝑙𝑒𝑡 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 (𝑀𝑡) +  𝑈𝑛𝑟𝑒𝑎𝑙𝑖𝑠𝑒𝑑 𝑃𝑁𝐿 < 𝑀𝑀𝑅(𝑈𝑡) 

the threshold is when 𝑀𝑎𝑟𝑔𝑖𝑛 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝑀𝑀𝑅, or equivalently,  

𝑃𝑛𝐿 (Ƀ) =  𝑀𝑀𝑅(Ƀ) −𝑊𝑎𝑙𝑙𝑒𝑡 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 (Ƀ) 

⇒ 𝑁𝐿 (
1

𝑆0
−
1

𝑆𝑛
𝐿) =  (0.4% ×

𝑁

𝑆0
) + (0.075% × 𝑁

𝐿 + 1

𝑆0𝐿
) + (𝑟𝑡 × 𝑁

𝐿 + 1

𝑆0𝐿
) − (

𝑁

𝑆0
−∑

𝑁𝐿

𝑆𝑖
𝑟𝑖

𝑛

𝑖=1

) 

⇒ 𝑺𝒕
𝑳 = $ 

𝑳𝟐𝑺𝟎

𝑳𝟐 (𝟏 − ∑
𝑺𝟎
𝑺𝒊
𝒓𝒊

𝒕
𝒊=𝟏 ) + 𝑳(𝟗𝟗. 𝟓𝟐𝟓%− 𝒓𝒕) − 𝟎. 𝟎𝟕𝟓%− 𝒓𝒕

 

 

2.1.3 Special Case: Without Funding & Fees 

At time 0, the margin account wallet balance is 

𝑀0 = Ƀ
𝑁

𝑆0
 

the position value is  

𝑃0 = Ƀ 
𝑁𝐿

𝑆0
 

The initial margin requirement is 

𝐼(Ƀ) = 1.00% ×
𝑁

𝑆0
 

 

Assume that no liquidation occurs up to the 𝑛𝑡ℎ funding timestamp, 𝑡𝑛, then 

𝑀𝑛 = 𝑀0 = Ƀ
𝑁

𝑆0
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𝑃𝑛 = Ƀ 
𝑁𝐿

𝑆𝑛
 

𝑈𝑡(Ƀ) = 0.4%×
𝑁

𝑆0
 

Liquidation happens at 𝑡𝑛 when 

𝑀𝑛 + 𝑁𝐿 (
1

𝑆0
−
1

𝑆𝑛
) = 𝑈𝑛 

⇒ 𝑁𝐿 (
1

𝑆0
−
1

𝑆𝐿
) =  0.4%×

𝑁

𝑆0
−
𝑁

𝑆0
 

⇒ 𝑺𝑳 = $ 
𝑳𝑺𝟎

𝑳 + 𝟗𝟗.𝟔%
 

 

 

2.2 Funding Rates & Index Prices Properties 

2.2.1 Funding Rates Distribution 

We use the data for XBTUSD 8-hourly funding rate history from 2016-06-05 4:00 GMT to 2020-

09-02 20:00 GMT (4653 funding timestamps) from BitMEX website (Funding History, 2020).  

Figure 3 shows the kernel density graph of funding rate frequency with 500 bins. The distribution 

resembles a normal distribution with mean: 1.3066 × 10−4, variance: 1.3549 × 10−6. The spike 

occurs at the mode funding rate: 1 × 10−4. 

Figure 4 shows the kernel density graph of funding rate frequency with 500 bins when we exclude 

all occurrences of funding rate at 1 × 10−4. The distribution resembles a multimodal distribution 

with mean: 1.4497 × 10−4 , variance: 1.9868 × 10−6 . The three peaks from left to right are 

centered at: −3.77 × 10−3, 6 × 10−5, 3.75 × 10−3. 

Figure 5 shows the fluctuations of 30-day-mean and variance distribution of funding rates. The 

distribution of mean funding rates shows a mean-reverting character. 

Figure 6 shows that funding rate has a low level of autocorrelation for lags greater than 3 funding 

timestamps. Therefore, future funding rates have low dependency on the past funding rates. 

The normal distribution and mean-reverting character of the funding rates indicate that we can 

simulate funding rate as an Ornstein–Uhlenbeck process described in section 3.2. 
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Figure 3. Kernel Density Plot of Funding Rate Frequencies for 1551 Days and 4653 Funding 

Timestamps 

 

 

 

Figure 4. Kernel Density Plot of Funding Rate Frequencies for 1551 Days and 3172 Funding 

Timestamps (excluding the 1481 observations that funding rates are 0.0001) 

9

Wu: A Quantitative Analysis on Bitcoin Perpetual Inverse Futures

Published by Digital Commons @ IWU, 2020



 

 

 

a.  

b.  

Figure 5. a. 30-day-mean and variance distribution of funding rates for 4653 funding 

timestamps. b. zoomed in the variance distribution in a. 
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Figure 6. Autocorrelations of Funding Rates For 4653 Funding Timestamps with Lagged 

Funding Timestamps from 1 to 100 

 

 

2.2.2 Index Price Distribution 

We use data from 2019-01-01 1:01 GMT to 2020-04-18 6:08 GMT (1420 funding timestamps) for 

XBTUSD 8-hourly index price (these are (high + low) / 2 of index prices at each funding 

timestamp). 

Figure 7 shows that future index prices are highly correlated with past index prices. Intuitively, 

the exchange rate of Bitcoin and USD follows a continuous path and do not fluctuate haphazardly 

over every 8 hours. 

 

Figure 7. Autocorrelations of index prices for 1420 funding timestamps with lagged funding 

timestamps of 1 to 100 
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2.2.3 Funding Rates vs Index Price Regression 

Model & Variables 

We regress funding rates on index price 𝑥1,𝑡, index price squared 𝑥2,𝑡, and lagged index price 

𝑥4,𝑡−1, 𝑥5,𝑡−2, 𝑥6,𝑡−3…. lagged index price 𝑥𝑖+3,𝑡−𝑖 is the index price 𝑖 funding timestamps before 

𝑡.  

𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + 𝛽3𝑥3,𝑡 + ∑ 𝛽𝑘𝑥𝑘,(𝑡−𝑘+3)

3+𝑙𝑎𝑔𝑇𝑖𝑚𝑒

𝑘=4

+ 𝜖𝑡 ,   𝑡 = 𝑙𝑎𝑔𝑇𝑖𝑚𝑒 + 1,… ,1420 

where 𝑙𝑎𝑔𝑇𝑖𝑚𝑒 is the number of past funding timestamps we want to consider in the regression. 

 

Table 2. Regression Variables 

Symbol Variable Descriptions 

𝑌𝑡 Funding Rate The 8-hourly funding rate at funding timestamp 𝑡 

𝑥1,𝑡 Index Price The index price at funding timestamp 𝑡 multiplied by 10−6 

𝑥2,𝑡 Index Price Squared The square of the index price at funding timestamp 𝑡 
multiplied by 10−12. 𝑥2,𝑡 = 𝑥1,𝑡

2  

𝑥3,𝑡 Dow Jones Industrial 

Average 

The daily Dow Jones Industrial Average at the day (or the 

last trading day) of the timestamp 𝑡 multiplied by 10−4. 

𝑥𝑖+3,𝑡−𝑖 Lagged Time Index Price The index price 𝑖 funding timestamps before 𝑡 multiplied by 

10−4. 𝑖 ∈ [0, ∞) 

 

We run the regression on the historical data from 2019-01-01 1:01 GMT to 2020-04-18 6:08 GMT 

(1420 funding timestamps) XBTUSD 8-hourly funding timestamps (complete R regression report 

in Appendix 3) and daily Dow Jones Industrial Average over the same period of time (Dow Jones 

Industrial Average, 2020). We choose Dow Jones Industrial Average as one of the variables 

because it indicates the economy and financial market performance of US industry. Although the 

decentralized feature of blockchain makes it difficult to obtain the geographic distribution of 

Bitcoin traders, the fact that 66.86% of global Bitcoin ATMs are located in the United States (Topic: 

Bitcoin, 2020) indicates Bitcoin’s popularity among American traders. Furthermore, the global 

economy and internet technology are dominated by developed countries like the United States, 

giving Dow Jones Industrial Average more credibility as a potential variable for Bitcoin spot prices. 

We tested the goodness of fit by a control study in Table 4. The models are in Table 3. 
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Table 3. Control Variable Regression Models 

Model # Control Formula 

1 lagTime = 0 𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + 𝛽3𝑥3,𝑡 + 𝜖𝑡 

2 lagTime = 0 & without Dow Jones Term 𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + 𝜖𝑡 

3 lagTime = 0 & without Index Price Term 𝑌𝑡 = 𝛽0 + 𝛽2𝑥2,𝑡 + 𝛽3𝑥3,𝑡 + 𝜖𝑡 

4 lagTime = 0 & without Index Price Squared Term 𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽3𝑥3,𝑡 + 𝜖𝑡 

5 lagTime = 1 𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + 𝛽3𝑥3,𝑡 + 𝛽4𝑥4,𝑡−1
+ 𝜖𝑡 

6 lagTime = 2 𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + 𝛽3𝑥3,𝑡 + 𝛽4𝑥4,𝑡−1
+ 𝛽5𝑥5,𝑡−2 + 𝜖𝑡 

7 lagTime = 3 𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + 𝛽3𝑥3,𝑡 + 𝛽4𝑥4,𝑡−1
+ 𝛽5𝑥5,𝑡−2 + 𝛽6𝑥6,𝑡−3 + 𝜖𝑡 

 

Since the index price has a high value of autocorrelation (section 2.2.2), we expect there to be not 

much improvement in the accurateness of regression by having n 𝑙𝑎𝑔𝑇𝑖𝑚𝑒 variables to having 

none. Compare Model 1, 5, 6, 7 for 𝑙𝑎𝑔𝑇𝑖𝑚𝑒 = 0,1,2,3 respectively. Figure 4 shows that the 

adjusted R-square of 𝑙𝑎𝑔𝑇𝑖𝑚𝑒 = 0 (0.2709) is very close to that of 𝑙𝑎𝑔𝑇𝑖𝑚𝑒 = 1 (0.2714), and 

the residual standard error of 𝑙𝑎𝑔𝑇𝑖𝑚𝑒 = 0 is 0.0003987  is equal to that of 𝑙𝑎𝑔𝑇𝑖𝑚𝑒 = 1 (Model 

1, 5); this can be explained by the close to perfect autocorrelation between the current index price 

and the index price at the last funding timestamp. Although both the adjusted R-square and the 

residual standard error has slight improvements as 𝑙𝑎𝑔𝑇𝑖𝑚𝑒 variables increase from 1 to 3 (Model 

5, 6, 7), this is not robust to indicate an appreciable improvement in the goodness of fit. 

A comparison between Model 1 & Model 2 shows that including Dow Jones term would greatly 

increase the model’s goodness to fit; a comparison between Model 1 & Model 3, Model 1 & Model 

4 show that both index price term and index price squared term could improve the model’s fitness, 

and that the improvement is more apparent with incorporating the index price squared term. 

Comparisons between Model 1 & Model 2, 3, 4 show that incorporating the Dow Jones term 

decreases the residual standard error the most. Comparisons between Model 1 & Model 5, 6, 7 

show that including lagTime terms are not necessary for the goodness of fit. This conclusion is 

also supported by the high autocorrelation level between current and past index prices. 

Please refer to Appendix 3 for complete R reports. 
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Table 4. Control Variable Regression Models Test Results 

Criterion Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Adjusted 

𝑅2 

0.2709 0.2087 0.2564 0.2398 0.2714 0.285 0.3015 

Residual 

standard 

error 

0.0003987 

DF = 1416 

0.0004154 

DF = 1417 

0.0004027 

DF = 1417 

0.0004071 

DF = 1417 

0.0003987 

DF = 1414 

0.0003951 

DF = 1412 

0.0003907 

DF = 1410 

p-value The p-values are all < 2.2 × 10−16 

 

 

Regression Results 

According to the control test, we choose Model 1: 

𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + 𝛽3𝑥3,𝑡 + 𝜖𝑡   

Table 5 shows the quantile distribution of regression variables. The minimum of index price is 

3358, occurred on 29th January 2019, while the maximum of index price is 13481, occurred on 

26th June 2019 (Bitcoin Price Index Monthly 2012-2020, 2020). As we have explained earlier, 

BitMEX’s .BXBT index price is a weighted average of Bitcoin / USD exchange rates over five 

major exchanges. Given the volatility of Bitcoin spot markets, it is not uncommon for the 

exchange rate to fluctuate by $10000 / Ƀ over 16 months. 

 

Table 5. Quantile Distribution of Variables Times × 10−4 

Variable Min 1Q Median 3Q Max Std Dev 

𝑌𝑡 −37.5 −0.58 1 1 31.59 4.6679 

𝑥1,𝑡 33.5784 52.9129 79.2903 93.9194 134.8101 24.3789 

𝑥2,𝑡 0.1128 0.2800 0.6287 0.8821 1.8174 0.3583 

𝑥3,𝑡 1859.1930 2561.5615 2643.8480 2726.9971 2955.1420 187.7828 

𝜖𝑡 −0.0036 −0.0002 0.0000 0.0002 0.0029 - 

 

The regression result for 𝑙𝑎𝑔𝑇𝑖𝑚𝑒 = 0: 

𝑌𝑡 = −0.0015614 − 0.1460681 𝑥1,𝑡 + 14.2736774 𝑥2,𝑡 + 68.6675722 𝑥3,𝑡 
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Table 6 summarizes the regression results. The p-value (p-value: < 2.2 × 10−16) is much smaller 

than 0.01, meaning there is significant linear relationship between the variables in the regression. 

The regression coefficients for  𝑥1,𝑡 and 𝑥2,𝑡 are both significant under <0.1% significance level. 

Consider that for standard vanilla futures contracts, the long position pays the short position daily 

the amount of daily increases in the underlying asset price. For XBTUSD contract, the underlying 

asset is the index price. The primary function of funding is to tether the Bitcoin / USD spot rate, 

which is reflected through the index price on BitMEX. The regression coefficient of index price 

squared (𝛽2 = 14.2736774) is much greater than that of index price (𝛽1 = −0.146068), thus the 

model indicates that when the index price increases, funding rate tends to increase, matching the 

exchange’s rule that the long position needs to pay the short position when funding rate is positive.  

Table 6. Regression coefficients 

Variable Coefficient 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 −0.0015614  ∗∗∗ 

(−9.359) 

𝑥1,𝑡 −0.1460681  ∗∗∗ 

(−5.411) 

𝑥2,𝑡 14.2736774  ∗∗∗ 

(7.849) 

𝑥3,𝑡 68.6675722   ∗∗∗ 

(11.044) 

Sample 1420 

Adjusted 𝑅2 0.2709 

Note: t values are inside the parenthesis; *, **, *** means <5%, <1%, <0.1% significance level 

 

 

 

Pearson correlation coefficient 

Table 7 measures the strength of a linear association between the variables. Our regression model 

is reliable given that all of the Pearson coefficients for different variable pairs are below 0.5 except 

for between 𝑥1,𝑡 and 𝑥2,𝑡. This is because by definition, 𝑥2,𝑡 = 𝑥1,𝑡
2 . We decide to keep them in the 

regression model because by control studies we have shown that keeping both these variables 

would improve appreciable goodness of fit. 
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Table 7. Pearson Correlation Coefficient of Variables 

Variable 𝒀𝒕 𝒙𝟏,𝒕 𝒙𝟐,𝒕 𝒙𝟑,𝒕 

𝒀𝒕 1    

𝒙𝟏,𝒕 0.4318 1   

𝒙𝟐,𝒕 0.4510 0.9866 1  

𝒙𝟑,𝒕 0.3903 0.4120 0.3910 1 

 

 

 

3 Liquidation in Relation to Leverage 

3.1 Set up 

Consider we enter a long position on 1 contract at time 𝑡 = 0, with leverage 𝐿 ∈ [1,100], and 

initial index price 𝑆0. We do NOT adjust our position and do NOT take out or add in money to the 

margin account after time 0. Our position gets liquidated as soon as the index price reaches or goes 

below 𝑆𝑡
𝐿($). Define stopping time  

𝜏 = inf{𝑡 ≥ 0: 𝑆𝑡 < 𝑆𝑡
𝐿} 

we want to evaluate 𝔼(𝜏) and ℙ(𝜏 ≤ 𝑇), which are the expected time for the position to be 

liquidated and the probability of getting liquidated before time 𝑇 > 0. 

 

3.2 Assumptions 

Assume under risk-neutral probability ℚ,  

• The index price (𝑺𝒕) follows the Geometric Brownian Motion: 

𝑑𝑆𝑡 = 𝑆𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡) 

⇔ 𝑆𝑡 = 𝑆0𝑒
𝜎𝑊𝑡+(𝜇−

𝜎2

2 )𝑡 , 𝑡 ≥ 0 

note that often times, 𝜎𝑡 is not a constant, but a mean-reverting process. Here we simplify 

the situation by taking 𝜎 as a constant 

Path for simulation: 

𝑆𝑡+𝑑𝑡 = 𝑆𝑡𝑒
𝜎𝜖𝑡+𝑑𝑡+(𝜇−

𝜎2

2 )𝑑𝑡 ,       𝜖𝑡+𝑑𝑡 = 𝑊𝑡+𝑑𝑡 −𝑊𝑡~𝑁(0,√𝑑𝑡) 

• The funding rate (𝒓𝒕) is Gaussian and follows the Ornstein–Uhlenbeck process Vasicek 

model 

𝑑𝑟𝑡 = 𝑎(𝑏 − 𝑟𝑡)𝑑𝑡 + 𝜉𝑑𝑊𝑡
(1)
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⇔ 𝑟𝑡 = 𝑟0𝑒
−𝑎𝑡 + 𝑏(1 − 𝑒−𝑎𝑡) + 𝜉 ∫ 𝑒−𝑎(𝑡−𝑠)𝑑𝑊𝑠

(1)
𝑡

0

 

where 𝑏 is the long-term mean level, 𝑎 is speed of reversion, 𝜉 is instantaneous volatility, 
𝜉2

2𝑎
 is long-term variance, (𝑊𝑡

(1)) is a Weiner process under ℚ. 

Path for simulation: 

𝑟𝑡+𝑑𝑢 = (1 − 𝜌)𝜁 + 𝜌𝑟𝑡 + (1 − 𝜌
2)0.5𝜎𝑟𝜀𝑡+𝑑𝑢 ,     𝜀𝑡+𝑑𝑢 = 𝑊𝑡+𝑑𝑢 −𝑊𝑡~𝑁(0,√𝑑𝑢) 

Note: In the previous section on Funding Rate Properties, we’ve shown that historical data for the 

funding rates resembled normal distribution. Therefore, in theory, we could model funding rates 

with respect to time as a mean-reverting process. 

 

 

3.3 Without Funding and Fees 

3.3.1 Expected Liquidation Time 𝔼(𝝉) 

Formula 1 (Lower Boundary Only) 

The expected liquidation time of long position on 𝑁𝐿 XBTUSD contracts when there is no 

funding or fees is 

𝔼(𝜏) = 𝐵𝑆0
1−
2𝜇
𝜎2 (1 − (

𝐿

𝐿 + 0.996
)
1−
2𝜇
𝜎2

 ) +
2 log

𝐿 + 99.6%
𝐿

𝜎2 − 2𝜇
, 𝜎 > 0, 𝐿 ∈ [1,100] 

where 𝜏 = inf{𝑡 ≥ 0: 𝑆𝑡 < 𝑆𝑡
𝐿} , 𝑆𝐿 =

𝐿𝑆0

𝐿+99.6%
,  for some constant 𝐵 ∈ ℝ , 𝜇 < 0 for 𝔼(𝜏) to be 

finite. 

 

Procedures 

Recall the constant liquidation price 𝑆𝐿 = $ 
𝐿𝑆0

𝐿+99.6%
 

𝜏 = inf{𝑡 ≥ 0: 𝑆𝑡 < 𝑆𝐿} ≈ inf {𝑡 ≥ 0: $ 𝑆𝑡 ≤ $ 
𝐿𝑆0

𝐿 + 99.6%
} 

 

Martingale 

Define martingale on [0, 𝜏], 

𝑌𝑡 = 𝔼𝑡(𝜏) = 𝔼𝑡(𝜏 − 𝑡) + 𝑡 = 𝑓(𝑆𝑡) + 𝑡, 𝑡 ≤ 𝜏 

Satisfies 𝑓(𝑆𝐿) = 0 since 𝑌𝜏 = 𝔼𝜏(𝜏) = 0 + 𝜏 

Verification: 𝑓(𝑆0) = 𝑌0 = 𝔼(𝑌𝜏) = 𝔼(𝑓(𝑆𝜏) + 𝜏) = 𝔼(𝜏) 

Since 𝑑𝑆𝑡 = 𝑆𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡) , so (𝑑𝑆𝑡)
2 = 𝑆𝑡

2𝜎2𝑑𝑡 

by Itô’s formula,  
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𝑑𝑌𝑡 = 1𝑑𝑡 + 𝑓𝑠(𝑆𝑡)𝑑𝑆𝑡 +
1

2
𝑓𝑠𝑠(𝑆𝑡)(𝑑𝑆𝑡)

2 = 1𝑑𝑡 + 𝑓𝑠(𝑆𝑡)𝑆𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡) +
1

2
𝑓𝑠𝑠(𝑆𝑡)𝑆𝑡

2𝜎2𝑑𝑡 

Thus,  

𝑌𝑡 = 𝑌0 +∫ (
1

2
𝑓𝑠𝑠(𝑆𝑡)𝑆𝑡

2𝜎2 + 𝑓𝑠(𝑆𝑡)𝑆𝑡𝜇 + 1)𝑑𝑡
𝑡

0

+∫ (𝑓𝑠(𝑆𝑡)𝑆𝑡𝜎) 𝑑𝑊𝑡

𝑡

0

 

Since 𝑌𝑡 is a martingale, the drift term (time-dependent term) is 0, thus we have the following ODE: 

{

𝜎2

2
𝑥2𝑓𝑥𝑥(𝑥) + 𝜇𝑥𝑓𝑥(𝑥) + 1 = 0, 𝑥 ∈ [𝑆𝐿 ,∞)

𝑓(𝑆𝐿) = 0, 𝑜𝑟 𝑝𝑟𝑒𝑖𝑠𝑒𝑙𝑦, lim
𝑥−→𝑀

𝑓(𝑥) = 0
 

Solve ODE 

Homogeneous solution: 𝑓ℎ𝑜𝑚𝑜(𝑥) = 𝐴 + 𝐵𝑥
1−

2𝜇

𝜎2 for some constant 𝐴, 𝐵 

Particular solution: 𝑓𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) =
2 𝑙𝑛(𝑥)

𝜎2−2𝜇
 

So,  𝑓(𝑥) = 𝐴 + 𝐵𝑥
1−

2𝜇

𝜎2 +
2 𝑙𝑛(𝑥)

𝜎2−2𝜇
 

Plugging in boundary condition 𝑓(𝑆𝐿) = 0 we get 𝐴 = −𝐵(𝑆𝐿)
1−

2𝜇

𝜎2 −
2 𝑙𝑛(𝑆𝐿)

𝜎2−2𝜇
 

Plugging in 𝑆𝐿 =
𝐿𝑆0

𝐿+99.6%
 we get Formula 1 

Analysis 

Consider the scenario when 𝐵 = 0, set 𝑔(𝐿, 𝜎) =
2 log

𝐿+99.6%

𝐿

𝜎2−2𝜇
,  

then 𝔼(𝜏) = 𝑓𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 =
2 log

𝐿+99.6%

𝐿

𝜎2−2𝜇
= 𝑔(𝐿, 𝜎). 

For 𝑔(𝐿, 𝜎) =
2 log

𝐿+99.6%

𝐿

𝜎2−2𝜇
 to be positive, we must have 𝜇 <

𝜎2

2
. 

Given that 𝑆𝑡 only has a lower bound at 𝑆𝐿, for positive drift 𝜇 > 0, we have ℙ(𝜏 = ∞) > 0, thus 

the value of 𝔼(𝜏) is unbounded. So, for 𝜇 < 0, ℙ(𝜏 < ∞) = 1, and 𝔼(𝜏) is bounded. 

Observation: when 𝜎 > 0 , 𝜎 → 0 , and  𝜇 < 0 , we have 𝑆0
1−

2𝜇

𝜎2 (1 − (
𝐿

𝐿+0.996
)
1−

2𝜇

𝜎2  ) → ∞ , 0 <

2 log
𝐿+99.6%

𝐿

𝜎2−2𝜇
≪ ∞, then we must have 𝐵 → 0 for 𝔼(𝜏) to be bounded. 

 

Figure 8 are the plots of 𝑔(𝐿, 𝜎) (x-axis: leverage 𝐿, y-axis: 𝜎, z-axis: 𝔼(𝜏), 𝜇 = −0.1). Since 

𝜎2 > 0 in 𝑔(𝐿, 𝜎), the plot is symmetric along the x-axis (leverage 𝐿). We only consider plot b. 

where 𝐿 ∈ [1,100], 𝜎 > 0. Notice that the effect of 𝐿 and 𝜎 on 𝔼(𝜏) is most apparent for small 𝐿 

and 𝜎, for which 𝔼(𝜏) decreases rather quickly with increments of 𝐿 or 𝜎. For larger 𝐿 or 𝜎, 𝔼(𝜏) 
decreases much slower with increments of 𝐿  or 𝜎 . Mathematically, this can be explained by 
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𝜕2𝑔(𝐿,𝜎)

𝜕𝐿2
,
𝜕2𝑔(𝐿,𝜎)

𝜕𝜎2
> 0 . Financially, this indicates that the risk of liquidation increases most 

significantly for lower leverage or lower volatility ranges, and remains rather staple for higher 

leverage or higher volatility ranges. Therefore, when the volatility is low, investors at lower 

leverage ranges would be more cautious about increasing their leverage, which would sharply 

decrease their expected liquidation time.  

 

a. 

 

b. 

Figure 8. Plot of the Particular Solution (x-axis: leverage 𝐿, y-axis: 𝜎, z-axis: 𝔼(𝜏), 𝜇 = −0.1),  

a. 𝐿, 𝜎 are unconstrained; b. 𝐿 ∈ [1,100], 𝜎 > 0 
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Formula 2 (Upper & Lower Boundaries) 

If we impose an upper limit 𝑆𝑈, (sell our position as soon as the index price reaches 𝑆𝑈), in 

addition to the forced liquidation at 𝑆𝐿 =
𝐿𝑆0

𝐿+99.6%
, the expected exit time 𝜏2 = inf{𝑡 ≥ 0: 𝑆𝑡 <

𝑆𝐿  𝑜𝑟 𝑆𝑡 > 𝑆𝑈} when there is no funding or fees is 

𝔼(𝜏2) =

2 (𝑙𝑛 (
𝐿𝑆0

𝑆𝑈(𝐿 + 0.996)
))𝑆0

1−
2𝜇
𝜎2

(𝜎2 − 2𝜇) ((𝑆𝑈)
1−
2𝜇
𝜎2 − (

𝐿𝑆0
𝐿 + 0.996)

1−
2𝜇
𝜎2
)

(1 − (
𝐿

𝐿 + 0.996
)
1−
2𝜇
𝜎2

 ) +
2 log

𝐿 + 0.996
𝐿

𝜎2 − 2𝜇
 

where 𝜎 > 0, 𝐿 ∈ [1,100] 

 

Procedures 

Consider an upper boundary 𝑆𝑈 such that we exit the position at  

𝜏2 = inf{𝑡 ≥ 0: 𝑆𝑡 < 𝑆
𝐿  𝑜𝑟 𝑆𝑡 > 𝑆𝑈} ≈ inf {𝑡 ≥ 0: $ 𝑆𝑡 ≤ $ 

𝐿𝑆0
𝐿 + 99.6%

, $ 𝑆𝑡 > $ 𝑆𝑈} 

Then 𝑓(𝑆𝑈) = 0. 

Plugging in the equation from the previous section, 

𝑓(𝑆𝑈) = −𝐵(𝑆𝐿)
1−
2𝜇
𝜎2 −

2 𝑙𝑛(𝑆𝐿)

𝜎2 − 2𝜇
+ 𝐵(𝑆𝑈)

1−
2𝜇
𝜎2 +

2 𝑙𝑛(𝑆𝑈)

𝜎2 − 2𝜇
= 0 

We get 

𝐵 =

2 𝑙𝑛(𝑆𝐿)
𝜎2 − 2𝜇

−
2 𝑙𝑛(𝑆𝑈)
𝜎2 − 2𝜇

(𝑆𝑈)
1−
2𝜇
𝜎2 − (𝑆𝐿)

1−
2𝜇
𝜎2

=
2 (𝑙𝑛(𝑆𝐿) −  𝑙𝑛(𝑆𝑈))

(𝜎2 − 2𝜇) ((𝑆𝑈)
1−
2𝜇
𝜎2 − (𝑆𝐿)

1−
2𝜇
𝜎2)

 

Plug in Formula 1, we get Formula 2 

Note: taking limit 𝑆𝑈 → ∞ in Formula 2 will get Formula 1 

 

 

3.3.2 Probability of Liquidation Before 𝑻: ℙ(𝝉 ≤ 𝑻) 

Formula 3 

The probability of getting liquidated before time 𝑇 is 

ℙ(𝜏 ≤ 𝑇) ≈ 1 − 𝑁(
ln(

𝐿 + 99.6%
𝐿 )

𝜎√𝑇
+ (

𝜇

𝜎
−
𝜎

2
)√𝑇) + exp (2(

𝜇

𝜎2
−
1

2
) ln(

𝐿

𝐿 + 99.6%
))𝑁(

ln(
𝐿

𝐿 + 99.6%)

𝜎√𝑇
+ (

𝜇

𝜎
−
𝜎

2
)√𝑇) 

where 𝑇 > 0, 𝜎 > 0, 𝐿 ∈ [1,100]. 
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Procedures 

Define martingale on [0, 𝜏], 

𝑌𝑡 = ℙ𝑡(𝜏 ≤ 𝑇) = 𝑓(𝑇 − 𝑡, 𝑆𝑡) 

Satisfies 𝑓(0, 𝑥) = 0, 𝑓(𝑡, 𝑆𝐿) = 1, and lim
𝑆→∞

𝑓(𝑡, 𝑆) = 0 

By Itô’s formula, 

𝑑𝑌𝑡 = −𝑓𝑡(𝑇 − 𝑡, 𝑆𝑡)𝑑𝑡 + 𝑓𝑠(𝑇 − 𝑡, 𝑆𝑡)𝑑𝑆𝑡 +
1

2
𝑓𝑠𝑠(𝑇 − 𝑡, 𝑆𝑡)(𝑑𝑆𝑡)

2

= −𝑑𝑡 + 𝑓𝑠(𝑇 − 𝑡, 𝑆𝑡)𝑆𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡) +
1

2
𝑓𝑠𝑠(𝑆𝑡)𝑆𝑡

2𝜎2𝑑𝑡 

Thus,  

𝑌𝑡 = 𝑌0 +∫ (
1

2
𝑓𝑠𝑠(𝑇 − 𝑡, 𝑆𝑡)𝑆𝑡

2𝜎2 + 𝑓𝑠(𝑇 − 𝑡, 𝑆𝑡)𝑆𝑡𝜇 − 𝑓𝑡(𝑇 − 𝑡, 𝑆𝑡)) 𝑑𝑡
𝑡

0

+∫ (𝑓𝑠(𝑇 − 𝑡, 𝑆𝑡)𝑆𝑡𝜎) 𝑑𝑊𝑡

𝑡

0

 

Since 𝑌𝑡 is a martingale, the drift term (time-dependent term) is 0, thus we have the following ODE: 

{
 
 

 
 
𝜎2

2
𝑥2𝑓𝑥𝑥(𝑡, 𝑥) + 𝜇𝑥𝑓𝑥(𝑡, 𝑥) − 𝑓𝑡(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ (0, 𝑇) × (𝑆𝐿 ,∞)

 𝑓(0, 𝑥) = 0,           𝑥 ∈ (𝑆𝐿 , ∞) 

𝑓(𝑡, 𝑆𝐿) = 1,            𝑡 ∈ [0, 𝑇]

lim
𝑥→∞

𝑓(𝑡, 𝑥) = 0,            𝑡 ∈ [0, 𝑇] 

 

The solution to the set of partial differential equations is given in an article on first hitting time. 

Guillaume (2014) has shown that for a geometric BM with 𝑆𝑡 = 𝑆0𝑒
𝜎𝑡𝑑𝑊𝑡+(𝜇𝑡−

𝜎𝑡
2

2
)𝑑𝑡

, the 

probability that 𝑋𝑡 will not hit boundary 𝑀,𝑀 < 𝑥0 during finite time interval [0, 𝑇] and that it 

will be above 𝑘, 𝑘 > 𝑀 at time 𝑇 is given by: 

ℙ ( inf
0≤𝑡≤𝑇

𝑋𝑡 > 𝑀 ,𝑋(𝑇) > 𝑘)

≈ 𝑁

(

 
 ln(

𝑆0
𝑘 )

√∫ 𝜎𝑡
2𝑑𝑡

𝑇

0

+
√
∫

(𝜇𝑡 −
𝜎𝑡
2

2 )

2

𝜎𝑡
2 𝑑𝑡

𝑇

0

)

 
 
− exp

(

 
 
 
 
 
2 ln (

𝑀
𝑆0
)
√
∫
(𝜇𝑡 −

𝜎𝑡
2

2 )
2

𝜎𝑡
2 𝑑𝑡

𝑇

0

√∫ 𝜎𝑡
2𝑑𝑡

𝑇

0

)

 
 
 
 
 

𝑁

(

 
 ln (

𝑀2

𝑘𝑆0
)

√∫ 𝜎𝑡
2𝑑𝑡

𝑇

0

+
√
∫

(𝜇𝑡 −
𝜎𝑡
2

2 )

2

𝜎𝑡
2 𝑑𝑡

𝑇

0

)

 
 

 

where 𝑁(. ) is the CDF of 𝑁(0,1) distribution. 

We consider constant 𝜇 and 𝜎, 
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ℙ ( inf
0≤𝑡≤𝑇

𝑋𝑡 > 𝑀 ,𝑋(𝑇) > 𝑘)

≈ 𝑁

(

 
 ln (

𝑆0
𝑘 )

√∫ 𝜎2𝑑𝑡
𝑇

0

+
√
∫

(𝜇 −
𝜎2

2 )
2

𝜎2
𝑑𝑡

𝑇

0

)

 
 
− exp

(

 
 
 
 2 ln (

𝑀
𝑆0
)
√
∫
(𝜇 −

𝜎2

2 )
2

𝜎2
𝑑𝑡

𝑇

0

√∫ 𝜎2𝑑𝑡
𝑇

0

)

 
 
 
 

𝑁

(

 
 ln (

𝑀2

𝑘𝑆0
)

√∫ 𝜎2𝑑𝑡
𝑇

0

+
√
∫

(𝜇 −
𝜎2

2 )
2

𝜎2
𝑑𝑡

𝑇

0

)

 
 

= 𝑁(
ln (

𝑆0
𝑘 )

𝜎√𝑇
+ (

𝜇

𝜎
−
𝜎

2
)√𝑇) − exp (2 (

𝜇

𝜎2
−
1

2
) ln (

𝑀

𝑆0
))𝑁(

ln (
𝑀2

𝑘𝑆0
)

𝜎√𝑇
+ (

𝜇

𝜎
−
𝜎

2
)√𝑇) 

and take 𝑘 = 𝑀 + 𝜀, for 𝜀 → 0 

ℙ(𝜏 > 𝑇) = ℙ( inf
0≤𝑡≤𝑇

𝑋𝑡 > 𝑀 ,𝑋(𝑇) > 𝑀) = lim
𝜀→0

ℙ( inf
0≤𝑡≤𝑇

𝑋𝑡 > 𝑀 , 𝑋(𝑇) > 𝑀 + 𝜀)

≈ 𝑁(
ln (

𝑆0
𝑀)

𝜎√𝑇
+ (

𝜇

𝜎
−
𝜎

2
)√𝑇) − exp (2 (

𝜇

𝜎2
−
1

2
) ln (

𝑀

𝑆0
))𝑁(

ln (
𝑀
𝑆0
)

𝜎√𝑇
+ (

𝜇

𝜎
−
𝜎

2
)√𝑇)  

ℙ(𝜏 ≤ 𝑇) = 1 − ℙ(𝜏 > 𝑇) 

Plug in 𝑀 =
𝑆0𝐿

𝐿+99.6%
, we get Formula 3 

 

 

3.4 Account for Funding and Fees - Simulations 

3.4.1 Set Up 

Since most investors would anticipate to sell off their positions for cash at some future dates (an 

“artificial maturity”, 𝑇) instead of keeping their positions on the exchange indefinitely, it is helpful 

to know before that “maturity” 𝑇 > 0, the expected liquidation time if liquidation happens 𝔼(𝜏′) 
and the probability of getting liquidated ℙ(𝜏′ ≤ 𝑇). Therefore, we simulate 2000 paths of (𝑆𝑡) and 
(𝑟𝑡) for every combination of parameters using the simulation formulas as described in Table 8 

(Assumptions) to evaluate the characteristics of liquidation (stopping) time before 𝑇 > 0  for 

different leverages, 𝜏′ = {0 ≤ 𝑡 ≤ 𝑇|𝑆𝑡 < 𝑆𝑡
𝐿}. Table 9 gives the constants we will use for all 

simulations. 

Table 8. Simulation Paths Parameters, Variables, and Model 

Path Parameters Variables Simulation Model 

𝑺𝒕 𝜎, 𝜇, 𝑑𝑡 𝜖𝑡 , 𝑆𝑡−𝑑𝑡 
𝑆𝑡+𝑑𝑡 = 𝑆𝑡𝑒

𝜎𝜖𝑡+𝑑𝑡+(𝜇−
𝜎2

2 )𝑑𝑡  

𝜖𝑡+𝑑𝑡 = 𝑊𝑡+𝑑𝑡 −𝑊𝑡~𝑁(0, √𝑑𝑡) 

𝒓𝒕 𝜎𝑟 , 𝜌, 𝜁, 𝑑𝑢 𝜀𝑡 , 𝑟𝑡−1 𝑟𝑡+𝑑𝑢 = (1 − 𝜌)𝜁 + 𝜌𝑟𝑡 + (1 − 𝜌
2)0.5𝜎𝑟𝜀𝑡+𝑑𝑢 

𝜀𝑡+𝑑𝑢 = 𝑊𝑡+𝑑𝑢 −𝑊𝑡~𝑁(0, √𝑑𝑢) 
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Table 9. Simulation Constants 

Constant Symbol Value Description 

Maturity 𝑇 80 Total number of time periods 

Sampling Time Period 𝑑𝑡 0.125 The rate of sampling in terms of time periods. The total 

number of samples is 
𝑇

𝑑𝑡
 

Funding Time Period 𝑑𝑢 1 The rate of funding timestamp occurrences in terms of time 

periods. The total number of funding timestamps is 
𝑇

𝑑𝑢
. 

Every funding timestamp is 8 hours, so maturity is 
8𝑇

𝑑𝑢
 hours 

Number of Paths numPaths 2000 The number of paths to simulate for (𝑆𝑡) and (𝑟𝑡) 

Margin Number of 

Contracts 
𝑁 1 The number of contracts bought initially with our own 

money. The total number of contracts is 𝑁 × 𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒 

Initial Index Price 𝑆0 10000 The initial index price we choose is close to the average 

price of a bitcoin 

Initial Funding Rate 𝑟0 0.0001 The initial funding rate we choose is close to the mean of 

historical funding rates 

Funding Rate Cap cap 0.0045 The absolute funding rate is capped at  

75% × (𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑟𝑔𝑖𝑛 −  𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑀𝑎𝑟𝑔𝑖𝑛). 

We use an approximated 75% × (1% −  0.4%) = 0.45% 

 

The Python codes for simulations are in Appendix 4. You can try different values for the constants 

and parameters. 

For the reference of parameter values for 𝑆𝑡, we have run a simulation on the data from 2019-01-

01 1:01 GMT to 2020-04-18 6:08 GMT (1420 funding timestamps) of XBTUSD 8-hourly funding 

timestamps. For 𝑟𝑡, we run a simulation on the data from 2016-06-05 4:00 GMT to 2020-09-02 

20:00 GMT (4653 funding timestamps). Therefore, the parameters we get could be referenced for 

8-hourly periods. The regression formulas we use are consistent with the simulated paths for (𝑆𝑡) 
and (𝑟𝑡) as specified in Assumptions. The regression coefficients are our references for simulation 

parameters. Since there are random terms drawn from Gaussian distribution, we yield slightly 

different values for parameters every time; Table 10 shows the approximated average or range 

of the regression coefficients from running the regressions ten times. Values of 𝜎, (1 − 𝜌)𝜁, and 

𝜌, are nearly always concentrated around a certain value, while values for 𝜇 and (1 − 𝜌2)0.5𝜎 have 

more variances every time given the randomness of 𝜖𝑡 and 𝜀𝑡 in their terms. 
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Table 10. Regression for Parameter Reference 

Path Regression Model Parameters 

𝑺𝒕 𝑦𝑡 = 𝛽0 + 𝛽1𝑥1𝑡 + 𝑒𝑟𝑟𝑜𝑟𝑡 

based on 

ln(𝑆𝑡) − ln(𝑆𝑡−1) = 𝜎𝜖𝑡 + (𝜇 −
𝜎2

2
) 

𝜎 ≈ 0.0005 

𝜇 ∈ [−0.0005, 0.001] 

𝒓𝒕 𝑦𝑡 = 𝛽0 + 𝛽1𝑥1𝑡 + 𝛽2𝑥2𝑡 + 𝑒𝑟𝑟𝑜𝑟𝑡  

based on  

𝑟𝑡 = (1 − 𝜌)𝜁 + 𝜌𝑟𝑡−1 + (1 − 𝜌
2)0.5𝜎𝜀𝑡 

(1 − 𝜌)𝜁 ≈ 0.00003 

𝜌 ≈ 0.75 

(1 − 𝜌2)0.5𝜎 ∈ [− 0.0001,−10 × 10−6] 

 

 

We control the funding rate process under the same set of parameters to understand how leverage 

effects liquidation under different drift 𝜇 and volatility 𝜎 of index price 𝑆𝑡. 

The model we use for the funding rate path is: 

𝑟𝑡 = 0.00003 + 0.75 𝑟𝑡−1 − 0.0003𝜀𝑡 

Figure 9 shows an arbitrary path following the above model. The path resembles the historical 

funding rates. For non-funding timestamps, the funding rate is considered to be 0. 

 

 

Figure 9. An Arbitrary Simulated Path for 𝑟𝑡 
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Figure 10 shows ten arbitrary paths following the 𝑆𝑡 model with 𝜎 = 0.0005 and 𝜇 = 0. The path 

resembles the historical index price. 

 

Figure 10. Ten Arbitrary Simulated Paths for 𝑆𝑡 with 𝜎 = 0.0005 and 𝜇 = 0 

 

Using different combinations of the parameters, drift 𝜇 ∈ [−0.5, 0.0005]  and volatility 𝜎 ∈
[0, 0.5] (samples are relatively evenly spaced within these intervals), for index price 𝑆𝑡, we ran 

2000 simulations for each leverage in the set {5𝑘|𝑘 ∈ [1,20]} for each combination. We obtained 

439 valid data points out of a total of 620; these data have parameters in the range 𝜇 ∈
[−0.0005, 0.0005] and volatility 𝜎 ∈ [0, 0.1]. The data points we excluded were the combinations 

that none of the 2000 paths was liquidated before 𝑇, thus are considered as outliers and could cause 

errors in the regression models. The next two sections summarize regression results. The variables 

selected in the regression models in these sections are based on a control study for a best fit 

according to adjusted 𝑅2 and is omitted here. 

 

 

 

3.4.2 Expected Liquidation Time for Liquidations Before Time 𝑻: 𝔼(𝝉′) 

The regression model: 

𝔼(𝜏′)𝑖 = 𝛽0 + 𝛽1𝜎𝑖 + 𝛽2𝜎𝑖
0.5 + 𝛽3𝜎𝑖

2 + 𝛽4𝜇𝑖 + 𝛽5𝜇𝑖
2 + 𝛽6𝐿𝑖 + 𝜖𝑖 ,   𝑖 = 1,… ,440 

The average for all liquidation before the fixed maturity 𝑇 = 80 follows: 

𝔼(𝜏′)𝑖 = 72.18 + 1587𝜎𝑖 − 551.8𝜎𝑖
0.5 − 4006𝜎𝑖

2 + 4811𝜇𝑖 − 1.298 × 10
7𝜇𝑖

2 − 0.2208𝐿𝑖 + 𝜖𝑖 

𝑖 = 1,… ,440 
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Table 11 summarizes the regression results; see Appendix 5 for the R report. The p-value (p-value: 

< 2.2 × 10−16) is much smaller than 0.01, thus there is significant linear relationship between the 

variables in the regression.  

The coefficient for 𝐿 is negative, meaning that expected liquidation time decreases as leverage 

increases.  

Recall for drift 𝜇 < 0, 𝑆𝑡 tends to move downward, thus the probability of getting liquidated in 

finite time is 1; for 𝜇 < 0 , positive first-order partial derivative with respect to 𝜇  is 4811 −
2 × 12,980,000𝜇 > 0, indicating that 𝔼(𝜏′) is an increasing function of negative 𝜇 . In other 

words, as expected, increasing the magnitude of the negative number 𝜇  (or equivalently, 

decreasing 𝜇) would decrease the expected liquidation time. The negative second-order partial 

derivative with respect to 𝜇 indicates for 𝜇 < 0, 𝔼(𝜏′) is a decelerated increasing function of 𝜇. 

The effect of volatility-related variables (𝜎, 𝜎0.5, 𝜎2)  on 𝔼(𝜏′)  is mixed. Intuitively, for high 

leverage positions with liquidation price close to their entry price, high volatility increases the risk 

to have an early liquidation. However, volatility also works to move the index price in the other 

direction further from liquidation. To see which scenario has a stronger effect, we observe ∀𝜎 >

0,
𝜕𝔼(𝜏′)

𝜕𝜎
= 1587 − 275.9𝜎−0.5 − 8012𝜎 < 0. The only critical point is the boundary value at 𝜎 =

0, where 𝔼(𝜏′) doesn’t not depend on 𝜎. Thus, 𝔼(𝜏′) decreases as 𝜎 increase, higher volatility 

decreases the expected liquidation time. Next, observe that  
𝜕2𝔼(𝜏′)

𝜕𝜎2
= 137.95𝜎−1.5 − 8012 , 

𝜕2𝔼(𝜏′)

𝜕𝜎2
> 0 𝑖𝑓 𝜎 < 0.0667, 𝑎𝑛𝑑 

𝜕2𝔼(𝜏′)

𝜕𝜎2
< 0 𝑖𝑓 𝜎 > 0.0667 . This shows that 𝔼(𝜏′) ’s decrease 

gets slower when 𝜎𝑖 approaches 0.0667, and gets faster when 𝜎 is further from 0.0667. Recall 

that our approximation for historical 𝜎 in Table 10 of the Set Up section is 0.0005, much smaller 

than 0.0667, so the result indicates that for 𝜎 ∈ [0, 0.0667], 𝔼(𝜏′) is a decelerated decreasing 

function of 𝜎. 

Table 11. Regression Coefficients 

Variable Coefficient 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 72.18  ∗∗∗ 

(43.909) 

𝜎 1,587  ∗∗∗ 

(9.010) 

𝜎0.5 −551.8  ∗∗∗ 

(-15.676) 

𝜎2 −4,006  ∗∗∗ 

(-4.912) 

𝜇 4,811  ∗∗∗ 

(3.599) 
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𝜇2 −12,980,000  ∗∗∗ 

(-3.920) 

𝐿 −0.2208  ∗∗∗ 

(-16.095) 

Sample 440 

Adjusted 𝑅2 0.8383 

Note: t values are inside the parenthesis; *, **, *** means <5%, <1%, <0.1% significance level 

 

 

3.4.3 Probability of Liquidation Before 𝑻: ℙ(𝝉′ ≤ 𝑻) 

The regression model: 

ℙ(𝜏′ ≤ 𝑇)𝑖 = 𝛽0 + 𝛽1𝜎𝑖
0.5 + 𝛽2𝜎𝑖

2 + 𝛽3𝜇𝑖 + 𝛽4𝜇𝑖
2 + 𝛽5𝐿𝑖 + 𝜖𝑖 ,   𝑖 = 1,… ,440 

The probability of getting liquidated before a fixed maturity 𝑇 = 80 follows: 

ℙ(𝜏′ ≤ 𝑇)𝑖 = 0.2686 + 2.531𝜎𝑖
0.5 − 27.55𝜎𝑖

2 − 277.3𝜇𝑖 + 199300𝜇𝑖
2 + 0.002945𝐿𝑖 + 𝜖𝑖 

𝑖 = 1,… ,440 

Table 12 summarizes the regression results; see Appendix 6 for the R report. The p-value (p-value: 

< 2.2 × 10−16) is much smaller than 0.01, thus there is significant linear relationship between the 

variables in the regression.  

The coefficient for  𝐿 is positive, indicating that the probability of getting liquidated before 𝑇 

increases as leverage increases.  

As mentioned before, 𝑆𝑡 tends to move downward for drift 𝜇 < 0, for which the probability of 

getting liquidated in finite time is 1; in our model, for 𝜇 < 0, the terms 𝛽3𝜇 + 𝛽4𝜇
2 > 0, and the 

negative first-order partial derivative with respect to 𝜇 is −277.3 + 199,300𝜇 < 0, indicating that 

ℙ(𝜏′ ≤ 𝑇) is an decreasing function of negative 𝜇. In other words, increasing the magnitude of the 

negative number 𝜇 (or equivalently, decreasing 𝜇) would increase the probability of liquidation 

before 𝑇. The positive second-order partial derivative with respect to 𝜇 indicates that for 𝜇 < 0,  

ℙ(𝜏′ ≤ 𝑇) is a decelerated decreasing function of 𝜇. This matches with our previous findings that 

𝔼(𝜏′) is a decelerated increasing function of 𝜇. 

To single out the effects of volatility-related terms (𝜎0.5, 𝜎2), we observe that ∀𝜎 ∈ (0, 0.0808), 

𝜕ℙ(𝜏′≤𝑇)

𝜕𝜎
= 1.2655𝜎−0.5 − 55.1𝜎 > 0, 𝑎𝑛𝑑 ∀𝜎 ∈ (0.0808,∞),

𝜕ℙ(𝜏′≤𝑇)

𝜕𝜎
= 1.2655𝜎−0.5 −

55.1𝜎 < 0. The two critical points are at 𝜎 = 0 and 0.0808. Next,  
𝜕2ℙ(𝜏′≤𝑇)

𝜕𝜎2
= −0.63275𝜎−1.5 −

55.1 < 0, ∀𝜎 > 0 , indicating that ∀𝜎 ∈ (0, 0.0808) , ℙ(𝜏′ ≤ 𝑇)  is an decelerated increasing 

function of 𝜎, and ∀𝜎 ∈ (0.0808,∞),  ℙ(𝜏′ ≤ 𝑇) is an accelerated decreasing function of 𝜎. The 

regression in Table 10 of the Set Up section suggests that 𝜎 ≈ 0.0005 . For 𝜎 ≈ 0.0005 , 
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ℙ(𝜏′ ≤ 𝑇) is an accelerated increasing function of 𝜎, indicating that increasing volatility would 

increase the probability of getting liquidated before 𝑇 at a decreasing pace. This matches with our 

previous findings that 𝔼(𝜏′) is a decelerated decreasing function of 𝜎. 

 

Table 12. Regression Coefficients 

Variable Coefficient 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.2686  ∗∗∗ 

(10.315) 

𝜎0.5 2.531  ∗∗∗ 

(15.327) 

𝜎2 −27.55  ∗∗∗ 

(-6.055) 

𝜇 −277.3  ∗∗∗ 

(-9.663) 

𝜇2 199,300  ∗∗ 

(2.789) 

𝐿 0.002945  ∗∗∗ 

(9.897) 

Sample 440 

Adjusted 𝑅2 0.5924 

Note: t values are inside the parenthesis; *, **, *** means <5%, <1%, <0.1% significance level 
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3.5 Should I Worry about Funding Rates? 

Our results show that when funding is present, high leverage increases liquidation risks by 

scaling up the volatility of the cash flows. Also, based on simulations (unspecified in this paper), 

we postulate that higher volatility of funding rates also increase liquidation risks. Comparing our 

theoretical models earlier in this section, the liquidation price is constant in the model ignoring 

funding and fees (funding and fees are set to 0) and variable in the model considering funding 

and fees. Therefore, we postulate that with more volatile funding rates, the increasing risks of 

getting liquidated would transform into lower expected liquidation time and higher probability of 

liquidation before a certain time. 

Using the same simulation paths for 𝑆𝑡, we compared the simulated expected liquidation time for 

liquidations before time 𝑇 and the probability of liquidation before time 𝑇. Figure 11 shows an 

example of such simulation; the example in general matches with our expectation that funding 

decreases the expected liquidation time and increases the probability of liquidation. 

 

a. 

 

b. 

Figure 11. Comparison of simulated a. 𝔼(𝜏) and b. ℙ(𝜏 < 𝑇) no funding − ℙ(𝜏 < 𝑇) with funding  

(𝜎 = 0.05 and 𝜇 = 0.0005 for 𝑆𝑡) 
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4 Conclusion 

In this study, we have analyzed multiple aspects of the BitMEX Perpetual Inverse Futures 

XBTUSD Contract. First, we provided a quantitative description of holding a long position of the 

contract. Then, we offered a regression model to characterize the funding rate as a function of 

index price and the Dow Jones Industrial Average. Next, we studied the effects of leverage on 

liquidation as a stopping time problem. To do so, we derived theoretical formulas for expected 

liquidation time and the probability of getting liquidated before a certain future time by using 

stochastic calculus methods, simulations, and regressions. In addition, we analyzed the effects of 

volatility and drift in the geometric Brownian motion model for index price and the leverage on 

the expected liquidation time and the probability of liquidation. 

The results of this study will be useful for both investors and researchers in the finance field. For 

investors to assess their risks and design optimal trading strategies, the simulation code we 

provided in the appendix could be customized with different values according to the current 

cryptocurrency market. The systematic quantitative description of the XBTUSD contract would 

also provide researchers with further information into understanding the designing of 

cryptocurrency derivative exchanges. Furthermore, the theoretical models and regression models 

for the characteristics of liquidation times would also assist quantitative finance researchers 

towards building more realistic models in their future researches on Perpetual Inverse Futures. 

Further relevant topics of interest include quantitatively describe the factors that determine the 

index price or the Bitcoin / USD exchange rates over major exchanges. Also, when funding and 

fees are considered, we have only studied the characteristics of leverage on liquidation in a fixed 

time period and under the same set of parameters for funding rates. In order to understand the 

effects of funding rate properties on liquidation and the distribution of liquidations over various 

timespans, more simulations needed to be tested. Finally, though few studies have been able to 

provide closed form solutions for first-hitting time problems on double stochastic processes, it is 

still a promising topic in the field of quantitative finance. 
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Appendix 

Appendix 1 Derivation of Bankruptcy Price 

Bankruptcy price is the spot price where “all initial margin is lost”, thus 

− 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑟𝑔𝑖𝑛 = 𝑃𝑛𝐿 = # 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑠 ×  𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × (
1

𝐸𝑛𝑡𝑟𝑦
 −

1

𝐸𝑥𝑖𝑡 𝑃𝑟𝑖𝑐𝑒
) 

Here 𝐸𝑥𝑖𝑡 𝑃𝑟𝑖𝑐𝑒 = 𝐵𝑎𝑛𝑘𝑟𝑢𝑝𝑡𝑐𝑦 𝑃𝑟𝑖𝑐𝑒, so we get 

−𝑀0 = 𝑁𝐿 × 1 × (
1

𝑆0
−
1

𝐾
) = −

𝑁

𝑆0
 

therefore, 

𝐾($) = 𝑆0 ×
𝐿

𝐿 + 1
=

𝑆0𝐿

𝐿 + 1
 

which means the bankruptcy price is $
𝑆0𝐿

𝐿+1
= Ƀ1, 𝑜𝑟 Ƀ

𝐿+1

𝑆0𝐿
= $ 1 

Since we have 𝑁𝐿 contracts in total, at bankruptcy, our position is worth $ 𝑁𝐿 = Ƀ 𝑁
𝐿+1

𝑆0
 

 

Appendix 2 Liquidation Definition 

The stopping time 𝜏 is when our position gets liquidated by BitMEX. It happens when the 

margin balance goes below the maintenance margin requirement. 

Margin Balance = Wallet Balance + Unrealised PNL. 

Unrealised PNL = Current profit and loss from all open positions. 

Wallet Balance = Deposits - Withdrawals + Realised PNL 

--- Margin Term Reference, BitMEX 

where 

𝑈𝑛𝑟𝑒𝑎𝑙𝑖𝑠𝑒𝑑 𝑃𝑁𝐿 = Ƀ 𝑁𝐿 (
1

𝑆0
−
1

𝑆𝑡
) 

 

 

Appendix 3 Funding Rate Regression R Output 

Model 1 𝒍𝒂𝒈𝑻𝒊𝒎𝒆 = 𝟎 

𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + 𝛽3𝑥3,𝑡 + 𝜖𝑡 

## Residuals: 
##        Min         1Q     Median         3Q        Max  
## -0.0032752 -0.0001460 -0.0000015  0.0001728  0.0029876  
##  
## Coefficients: 
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##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept) -0.0015614  0.0001668  -9.359  < 2e-16 *** 
## V2          -0.1460681  0.0269957  -5.411 7.36e-08 *** 
## V3          14.2736774  1.8184213   7.849 8.18e-15 *** 
## V4          68.6675722  6.2175112  11.044  < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.0003987 on 1416 degrees of freedom 
## Multiple R-squared:  0.2725, Adjusted R-squared:  0.2709  
## F-statistic: 176.8 on 3 and 1416 DF,  p-value: < 2.2e-16 

 

Model 2 𝒍𝒂𝒈𝑻𝒊𝒎𝒆 = 𝟎 & without Dow Jones Term 

𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + 𝜖𝑡 

## Residuals: 
##        Min         1Q     Median         3Q        Max  
## -0.0035850 -0.0001504  0.0000313  0.0001614  0.0028875  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept) -0.0000164  0.0000947  -0.173 0.862550     
## V2          -0.0939510  0.0276915  -3.393 0.000711 *** 
## V3          12.1822660  1.8841541   6.466 1.38e-10 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.0004154 on 1417 degrees of freedom 
## Multiple R-squared:  0.2098, Adjusted R-squared:  0.2087  
## F-statistic: 188.1 on 2 and 1417 DF,  p-value: < 2.2e-16 

 

Model 3 𝒍𝒂𝒈𝑻𝒊𝒎𝒆 = 𝟎 & without Index Price Term 

𝑌𝑡 = 𝛽0 + 𝛽2𝑥2,𝑡 + 𝛽3𝑥3,𝑡 + 𝜖𝑡 

## Residuals: 
##        Min         1Q     Median         3Q        Max  
## -0.0033219 -0.0001416 -0.0000288  0.0001707  0.0029382  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept) -0.0018999  0.0001562  -12.16   <2e-16 *** 
## V2           4.5889545  0.3240266   14.16   <2e-16 *** 
## V3          62.7869114  6.1825618   10.15   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.0004027 on 1417 degrees of freedom 
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## Multiple R-squared:  0.2574, Adjusted R-squared:  0.2564  
## F-statistic: 245.6 on 2 and 1417 DF,  p-value: < 2.2e-16 

 

Model 4 𝒍𝒂𝒈𝑻𝒊𝒎𝒆 = 𝟎 & without Index Price Squared Term 

𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽3𝑥3,𝑡 + 𝜖𝑡 

## Residuals: 
##        Min         1Q     Median         3Q        Max  
## -0.0033394 -0.0001374 -0.0000471  0.0001693  0.0029264  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept) -0.002104   0.000155  -13.57   <2e-16 *** 
## V2           0.062510   0.004864   12.85   <2e-16 *** 
## V3          63.585184   6.314580   10.07   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.0004071 on 1417 degrees of freedom 
## Multiple R-squared:  0.2408, Adjusted R-squared:  0.2398  
## F-statistic: 224.8 on 2 and 1417 DF,  p-value: < 2.2e-16 

 

Model 5 𝒍𝒂𝒈𝑻𝒊𝒎𝒆 = 𝟏 

𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + 𝛽3𝑥3,𝑡 + 𝛽4𝑥4,𝑡−1 + 𝜖𝑡 

## Residuals: 
##        Min         1Q     Median         3Q        Max  
## -0.0032807 -0.0001471 -0.0000009  0.0001744  0.0029781  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept) -0.001568   0.000167  -9.388  < 2e-16 *** 
## V2          -0.203602   0.065348  -3.116  0.00187 **  
## V3          14.319741   1.821682   7.861 7.52e-15 *** 
## V4          68.929468   6.220345  11.081  < 2e-16 *** 
## V5           0.057076   0.058172   0.981  0.32668     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.0003987 on 1414 degrees of freedom 
## Multiple R-squared:  0.2735, Adjusted R-squared:  0.2714  
## F-statistic: 133.1 on 4 and 1414 DF,  p-value: < 2.2e-16 

 

Model 6 𝒍𝒂𝒈𝑻𝒊𝒎𝒆 = 𝟐 

𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + 𝛽3𝑥3,𝑡 + 4𝑥4,𝑡−1 + 𝛽5𝑥5,𝑡−2 + 𝜖𝑡 
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## Residuals: 
##        Min         1Q     Median         3Q        Max  
## -0.0034854 -0.0001454 -0.0000037  0.0001682  0.0030650  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept) -0.0015917  0.0001657  -9.606  < 2e-16 *** 
## V2          -0.2272070  0.0649447  -3.498 0.000482 *** 
## V3          13.6412783  1.8100621   7.536 8.60e-14 *** 
## V4          68.7347074  6.1665520  11.146  < 2e-16 *** 
## V5           0.3904060  0.0865116   4.513 6.93e-06 *** 
## V6          -0.3003542  0.0580867  -5.171 2.67e-07 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.0003951 on 1412 degrees of freedom 
## Multiple R-squared:  0.2875, Adjusted R-squared:  0.285  
## F-statistic:   114 on 5 and 1412 DF,  p-value: < 2.2e-16 

 

Model 7 𝒍𝒂𝒈𝑻𝒊𝒎𝒆 = 𝟑 

𝑌𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + 𝛽3𝑥3,𝑡 + 𝛽4𝑥4,𝑡−1 + 𝛽5𝑥5,𝑡−2 + 𝛽6𝑥6,𝑡−3 + 𝜖𝑡  

## Residuals: 
##        Min         1Q     Median         3Q        Max  
## -0.0034392 -0.0001447 -0.0000025  0.0001633  0.0034335  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept) -0.001606   0.000164  -9.793  < 2e-16 *** 
## V2          -0.208623   0.064292  -3.245   0.0012 **  
## V3          13.033724   1.792857   7.270 5.94e-13 *** 
## V4          68.311886   6.099531  11.200  < 2e-16 *** 
## V5           0.342342   0.085955   3.983 7.16e-05 *** 
## V6           0.072035   0.085942   0.838   0.4021     
## V7          -0.334606   0.057414  -5.828 6.94e-09 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.0003907 on 1410 degrees of freedom 
## Multiple R-squared:  0.3045, Adjusted R-squared:  0.3015  
## F-statistic: 102.9 on 6 and 1410 DF,  p-value: < 2.2e-16 
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Appendix 4 Simulation Codes 

Simulation Codes with a set of sample parameters 

1. import numpy as np   
2. import matplotlib.pyplot as plt   
3.    
4. ### Constants   
5. T = 80              # Total number of time periods   
6. dt = 0.125          # The rate of sampling in terms of time periods.   
7. du = 1              # The total number of samples is T/dt   
8. numPaths = 2000     # simulate numPath number of paths   
9. N = 1               # number of contracts   
10. S0 = 10000          # initial index price for every path   
11. r0 = 0.0001         # initial funding rate for every path   
12. cap = 0.0045        # funding rate cap   
13.    
14. ## Index price parameters   
15. sigma = 0.0005   
16. mu = -0.0001    
17.    
18. ## Funding rate parameters   
19. b1 = 0.00003        # (1-rho) * zeta   
20. b2 = 0.75           # rho   
21. b3 = -0.0003        # (1-rho^2 )^0.5 * sigma_r   
22.    
23. ### Leverage   
24. np.random.seed(1)   
25. leverage = [i*5 for i in range(1,21)]       # leverages to test   
26.    
27. ### Reports   
28. SimulationResultNFFile = "/Users/sarah/Desktop/SimulationResultNoFunding.txt"   
29. SimulationResultFile = "/Users/sarah/Desktop/SimulationResult.txt"   
30.    
31. ###### INDEX PRICE SIMULATION   
32. # paths   
33. def indexPricePath(sigma, mu):   
34.     S_path = []                             # paths of S = [path1, path2, ...]   
35.     for i in range (numPaths):   
36.         newPath = [S0]   
37.         randEpsilon = np.random.normal(0, np.sqrt(dt), int(T/dt))   
38.         for j in range (int(T/dt)):   
39.             temp = newPath[-

1] * (np.exp((mu - sigma ** 2 / 2) * dt + sigma * randEpsilon[j]))   
40.             newPath.append(temp)   
41.         S_path.append(newPath)              # newPath = [S0,S1,S2,...,S(T/dt)]   
42.     return S_path   
43.        
44. # plot   
45. def indexPricePathPlot(S_path):   
46.     x = [i for i in range(int(T/dt)+1)]   
47.     for i in range(numPaths):   
48.         plt.plot(x, S_path[i])   
49.     plt.xlabel("$t$")   
50.     plt.ylabel("$S_t$")   
51.     #plt.ylim(800,20000)   
52.     plt.title("Geometric Brownian Motion Index Price $S_t$\n")   
53.     plt.show()   
54.    
55. ###### FUNDING RATE SIMULATION   
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56. # paths   
57. def fundingRatePath(b1, b2, b3, r0):   
58.     r_path = []                             # paths of r = [path1, path2, ...]   
59.     for i in range (numPaths):   
60.         newPath = [r0]   
61.         lastRate = r0   
62.         randEpsilon = np.random.normal(0, np.sqrt(du), int(T/du))   
63.         count = 0   
64.         fundingPeriod = du / dt             # number of dt per du   
65.         for j in range (int(T/dt)):   
66.             if j % fundingPeriod != 0:      # funding only happens at every funding tim

estamp   
67.                 newPath.append(0)   
68.             else:   
69.                 temp = b1 + lastRate * b2 + b3 * randEpsilon[count]   
70.                 count += 1   
71.                 if temp > cap:   temp = cap   
72.                 elif temp < -cap:    temp = -cap   
73.                 lastRate = temp   
74.                 newPath.append(temp)   
75.         r_path.append(newPath)              # newPath = [r0,r1,r2,...,r(T/du)]   
76.     return r_path   
77.    
78. # plot   
79. def fundingRatePathPlot(r_path):   
80.     x1 = [i for i in range(int(T/dt)+1)]   
81.     for i in range(numPaths):   
82.         plt.plot(x1, r_path[i])   
83.     plt.xlabel("$t$")   
84.     plt.ylabel("$r_t$")   
85.     plt.ylim(-0.01,0.01)   
86.     plt.title("Mean-Reverting Funding Rate $r_t$\n")   
87.     plt.show()   
88.    
89. ##### Liquidation - With Funding   
90. def lqPrc(allS,allR,crrntIndex, L):   
91.     numerator = (L ** 2) * S0   
92.     k = 0   
93.     for i in range (1,crrntIndex):   
94.         k += allR[i] * S0 / allS[i]   
95.     denominator = (L ** 2) * (1 - k)    
96.     denominator += L * (0.99525 - allR[crrntIndex])   
97.     denominator -= 0.00075   
98.     denominator -= allR[crrntIndex]   
99.     return (numerator / denominator)   
100.    
101. def withFunding(L):   
102.     M0 = N / S0                         # initial margin   
103.     # Expected Liquidation Time E(τ)   
104.     lqPrice = 0   
105.     lqTime = []   
106.     lq = 0                              # number of path that are being liquidat

ed before T   
107.     for path in range(numPaths):   
108.         # for each path   
109.         for i in range (1, int(T/dt + 1)):   
110.             lqPrice = lqPrc(S_path[path],r_path[path],i,L)   
111.             if S_path[path][i] < lqPrice:   
112.                 lqTime.append(i*dt)   
113.                 lq += 1   
114.                 break   
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115.     ExpLqTime = np.average(lqTime)      # if τ <= T, the expected τ   
116.     # Probability of getting liquidated (at least once) in T time periods   
117.     LqProb = lq / numPaths   
118.     return (ExpLqTime, LqProb, lq, lqTime)   
119.    
120. # Results File   
121. def writeFunding():   
122.     ETau = []   
123.     tt = "With Funding"   
124.     tt += "\nNumber of Margin Contracts: N = " + str(N)   
125.     tt += "\nInitial Index Price: S0 = " + str(S0)   
126.     tt += "\nInitial Funding Rate: r0 = " + str(r0)   
127.     tt += "\nb1 = " + str(b1) + "\nb2 = " + str(b2) + "\nb3 = " + str(b3)    
128.     tt += "\n\nTotal Time Periods: T = " + str(T)    
129.     tt += "\n\nTotal Hours: 8T/du = " + str(8*T/du)   
130.     tt += "\nSampling Time Period: dt = " + str(dt)   
131.     tt += "\nNumber of Funding Timestamps: T/du = " + str(T/du)    
132.     tt += "\nNumber of Path Simulated = " + str(numPaths)   
133.     for i in range (len(leverage)):   
134.         temp = withFunding(leverage[i])   
135.         addtt = "\n\nLeverage: L = " + str(leverage[i])   
136.         addtt += "\nExpected Liquidation Time = " + str(temp[0])   
137.         addtt += "\nProbability of Liquidation on or before hour " + str(T / du)

 + " = " + str (temp[1])   
138.         ETau.append(temp[0])   
139.         tt += addtt   
140.        
141.     f = open(SimulationResultFile,"w+")   
142.     with open(SimulationResultFile, "wt") as f:   
143.         f.write(tt)   
144.        
145.     x1 = leverage   
146.     for i in range(len(leverage)):   
147.         plt.plot(x1, ETau)   
148.     plt.xlabel("$leverage$")   
149.     plt.ylabel("$E(τ)$")   
150.     plt.xlim(0,100,5)   
151.     plt.ylim(0,T)   
152.     plt.title("$E(τ)$ verses leverage")   
153.     plt.show()   
154.        
155.     # histogram of the distribution of all liquidation times   
156.     n, bins, patches = plt.hist(temp[3], temp[2], density=True, facecolor='r', a

lpha=0.75)   
157.     plt.ylabel("frequency")   
158.     plt.xlabel("time period")   
159.     plt.title("Distribution of Liquidation Times for "+str(temp[2])+" liquidatio

ns over "+str(numPaths)+" simulations \n Leverage = "+str(leverage[i]))   
160.     plt.show()   
161.    
162. ##### Liquidation - NO Funding   
163. def noFunding(L):   
164.     lqPriceNF = L * S0 / (L + 0.996)   
165.     # Expected Liquidation Time E(τ)   
166.     lqTimeNF = []   
167.     lqNF = 0        # number of path that are being liquidated before T   
168.     for path in range(numPaths):   
169.         for i in range (1, int(T/dt + 1)):   
170.             if S_path[path][i] < lqPriceNF:   
171.                 lqTimeNF.append(i)   
172.                 lqNF += 1   
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173.                 break   
174.     EpdLqTimeNF = np.average(lqTimeNF)   
175.     # Probability of Liquidation   
176.     # Probability of getting liquidated at least once in T time periods   
177.     LqProbNF = lqNF / numPaths   
178.     return (lqPriceNF, EpdLqTimeNF, LqProbNF, lqNF, lqTimeNF)   
179.    
180. # Results File   
181. def writeNoFunding():   
182.     Etau = []   
183.     tt = "Without Funding"   
184.     tt += "\nNumber of Margin Contracts: N = " + str(N)   
185.     tt += "\nInitial Index Price: S0 = " + str(S0)   
186.     tt += "\nsigma = " + str(sigma) + "\nmu = " + str(mu)   
187.     tt += "\n\nTotal Time Periods: T = " + str(T)    
188.     tt += "\n\nTotal Hours: 8T/du = " + str(8*T/du)   
189.     tt += "\nSampling Time Period: dt = " + str(dt)   
190.     tt += "\nNumber of Path Simulated = " + str(numPaths)   
191.     for i in range (len(leverage)):   
192.         temp = noFunding(leverage[i])   
193.         addtt = "\n\nLeverage: L = " + str(leverage[i])   
194.         addtt += "\nLiquidation Price = " + str(temp[0])   
195.         addtt += "\nExpected Liquidation Time = " + str(temp[1])   
196.         addtt += "\nProbability of Liquidation on or before hour " + str(T / du)

 + " = " + str (temp[2])   
197.         tt += addtt   
198.         Etau.append(temp[1])   
199.     f = open(SimulationResultNFFile,"w+")   
200.     with open(SimulationResultNFFile, "wt") as f:   
201.         f.write(tt)   
202.        
203.     x1 = leverage   
204.     for i in range(len(leverage)):   
205.         plt.plot(x1, Etau)   
206.     plt.xlabel("$leverage$")   
207.     plt.ylabel("$E(τ)$")   
208.     plt.xlim(0,100,5)   
209.     plt.ylim(0,T)   
210.     plt.title("$E(τ)$ verses leverage")   
211.     plt.show()   
212.        
213.     # histogram of the distribution of all liquidation times   
214.     n, bins, patches = plt.hist(temp[4], temp[3], density=True, facecolor='b', a

lpha=0.75)   
215.     plt.ylabel("frequency")   
216.     plt.xlabel("time period")   
217.     plt.title("Distribution of Liquidation Times for "+str(temp[3])+" liquidatio

ns over "+str(numPaths)+" simulations \n Leverage = "+str(leverage[i]))   
218.     plt.show()   
219.    
220. ##### Run Program   
221. S_path = indexPricePath(sigma, mu)   
222. indexPricePathPlot(S_path)   
223. r_path = fundingRatePath(b1, b2, b3, r0)   
224. fundingRatePathPlot(r_path)   
225. writeNoFunding()   
226. writeFunding()   
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Appendix 5 𝔼(𝝉′) Regression R Output 

𝔼(𝜏′)𝑖 = 𝛽0 + 𝛽1𝜎𝑖 + 𝛽2𝜎𝑖
0.5 + 𝛽3𝜎𝑖

2 + 𝛽4𝜇𝑖 + 𝛽5𝜇𝑖
2 + 𝛽6𝐿𝑖 + 𝜖𝑖 ,   𝑖 = 1,… ,440 

 
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -27.112  -5.393  -0.978   4.439  39.182  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  7.218e+01  1.644e+00  43.909  < 2e-16 *** 
## V2           1.587e+03  1.761e+02   9.010  < 2e-16 *** 
## V3          -5.518e+02  3.520e+01 -15.676  < 2e-16 *** 
## V4          -4.006e+03  8.156e+02  -4.912 1.28e-06 *** 
## V5           4.811e+03  1.337e+03   3.599 0.000357 *** 
## V6          -1.298e+07  3.312e+06  -3.920 0.000103 *** 
## V7          -2.208e-01  1.372e-02 -16.095  < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 7.998 on 432 degrees of freedom 
## Multiple R-squared:  0.8405, Adjusted R-squared:  0.8383  
## F-statistic: 379.5 on 6 and 432 DF,  p-value: < 2.2e-16 

 

Appendix 6 ℙ(𝝉′ ≤ 𝑻) Regression R Output 

ℙ(𝜏′ ≤ 𝑇)𝑖 = 𝛽0 + 𝛽1𝜎𝑖
0.5 + 𝛽2𝜎𝑖

2 + 𝛽3𝜇𝑖 + 𝛽4𝜇𝑖
2 + 𝛽5𝐿𝑖 + 𝜖𝑖 ,   𝑖 = 1,… ,440 

 

## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.64658 -0.07983  0.02802  0.11055  0.42036  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  2.686e-01  2.604e-02  10.315  < 2e-16 *** 
## V2           2.531e+00  1.652e-01  15.327  < 2e-16 *** 
## V3          -2.755e+01  4.550e+00  -6.055 3.04e-09 *** 
## V4          -2.773e+02  2.870e+01  -9.663  < 2e-16 *** 
## V5           1.993e+05  7.148e+04   2.789  0.00553 **  
## V6           2.945e-03  2.976e-04   9.897  < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.1735 on 433 degrees of freedom 
## Multiple R-squared:  0.597,  Adjusted R-squared:  0.5924  
## F-statistic: 128.3 on 5 and 433 DF,  p-value: < 2.2e-16 
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