Producing the Optimal Level of Disruption During Incidental Teaching: When is Too Much and Too Little?

Lori A. Alhambra
Illinois Wesleyan University

Valeri Farmer-Dougan, Faculty Advisor
Illinois State University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

https://digitalcommons.iwu.edu/jwprc/1996/posters/22

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
PRODUCING THE OPTIMAL LEVEL OF DISRUPTION DURING INCIDENTAL TEACHING: WHEN IS TOO MUCH AND TOO LITTLE?

Lori A. Alhambra, Department of Psychology, IWU and Valeri Farmer-Dougan*, Department of Psychology, ISU

The disequilibrium theory (Timberlake & Farmer-Dougan, 1991) is a behavioral economic model of reinforcement that allows specific predictions about the direction and magnitude of reinforcement effects. Incidental teaching, a behavioral intervention often used to increase social and verbal behavior, is one procedure in which such predictions can be made. Recently, Farmer-Dougan and Dougan (1995) tested the reinforcement effects produced by changes in the probability of a teacher disrupting an initiation to a toy item on on-task behavior of Head Start preschoolers. Results indicated that there was an optimal level for disrupting ongoing behavior, above or below which reinforcement effects greatly suffered. The present experiment, a direct test of the disequilibrium model of reinforcement, examined whether an optimal level of disruption could be produced. Local Head Start preschoolers played with toys without interruptions (baseline) and with interruptions in which continued access to toys were made contingent upon a language response. Interruptions of ongoing play behavior were varied across four levels: 15 sec, 30 sec, 45 sec, and 1 minute. The amount of time in which the target children spent in play and response behavior were measured across sessions.