Apr 15th, 2:00 PM - 3:00 PM

Holographic Optical Tweezers

Matthew Dearing
Illinois Wesleyan University

Gabriel C. Spaulding, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc

http://digitalcommons.iwu.edu/jwprc/2000/posters2/26

This Event is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
HOLOGRAPHIC OPTICAL TWEEZERS

Matthew T. Dearing and Gabriel C. Spalding*

Holographic Optical Tweezer arrays offer a new means of directing the assembly of nanoparticles into configurable structures. Previously, a generalized Lorentz-Mie scattering theory has been used to model single (non-holographic) optical traps. Here, we develop a simpler and more intuitive approach to examine the trapping potential as a function of particle size, the polarizability of the particle material as compared to that of the surrounding medium, the power of the laser used to trap the particles, and the angular divergence of the optics used for promoting assembly. For this calculation we incorporate an approximate form for the energy density of the laser beam - one that is appropriate both within and outside of the Rayleigh limit. We believe that our conclusions remain viable in the intermediate case, where the particles to be trapped have dimensions on the order of the wavelength of visible light; this regime is of particular interest in applications involving assembly of photonic bandgap materials and other photonically-active structures. As the first researchers to imbue computer-generated holograms with substance, we have produced the first complete implementation of the Holodeck: a laser beam which is passed through our computer-generated holograms forms a tailored array of "tractor beams" which causes nanoparticles to assemble into the desired form. We are also the first to address the key question regarding application of holographic optical tweezer arrays, namely the number of particles that can be simultaneously incorporated and manipulated.