Synthesis of Difunctional Isocyanates and Subsequent Reaction with the Hexamolybdate Anion

Delara Godrej
Illinois Wesleyan University

Rebecca Roesner, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Godrej, Delara and Roesner, Faculty Advisor, Rebecca, "Synthesis of Difunctional Isocyanates and Subsequent Reaction with the Hexamolybdate Anion" (2000). John Wesley Powell Student Research Conference. 22.
https://digitalcommons.iwu.edu/jwprc/2000/posters2/22

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
The attachment of organic molecules to polyoxometalates has led to the development of a variety of interesting compounds. Modification of the organic substituents attached to polyoxometalates may enable the specific targeting of biological macromolecules within diseased cells. Molecules of this type are already being used as selective markers for conventional electron microscopy and have been shown to exhibit anti-viral activity. These compounds are also expected to have utility as oxidation catalysts and anti-tumoral agents.

Our research involves the synthesis and characterization of the polyoxometalate complex $[\text{Bu}_4\text{N}]_4[(\text{Mo}_5\text{O}_{18})\text{Mo}_N-Z-N\text{_Mo}(\text{Mo}_5\text{O}_{18})]$ where $Z = -(\text{C}_6\text{H}_4)\text{O}-(\text{CH}_2)_3\text{O}(\text{C}_6\text{H}_4)$. The synthesis of the difunctional isocyanate linker OCN-(C$_6$H$_4$)O(CH$_2$)$_3$O(C$_6$H$_4$)-NCO has recently been achieved. Subsequent plans include reacting the diisocyanate with two equivalents of n-butylammonium hexamolybdate to obtain the target molecule.