Colony Movement in the Freshwater Bryozoan Lophopodella carteri

Robert Grabowski
Illinois Wesleyan University

Susie Balser, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Grabowski, Robert and Balser, Faculty Advisor, Susie, "Colony Movement in the Freshwater Bryozoan Lophopodella carteri" (2000). John Wesley Powell Student Research Conference. 9.
https://digitalcommons.iwu.edu/jwprc/2000/posters/9

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
Poster Presentation 17

COLONY MOVEMENT IN THE FRESHWATER BRYOZOAN
LOPHOPODELLA CARTERI

Robert Grabowski and Susie Balser*
Department of Biology, Illinois Wesleyan University

Lophopodella carteri is a member of the Phylum Bryozoa that forms clumped massive colonies in freshwater habitats throughout the world. Every member of the colony is linked by a common body cavity called a coelom. Previous researchers have documented locomotion in colonies of L. carteri and other members of the bryozoan Class Phylactolaemata. I am testing hypotheses relating to the stimulus of locomotion and the mechanism of colony movement. The rate of motion is variable but ranges from 0-0.5 cm/day. Since L. carteri is generally found in shaded habitats, I am testing for a phototaxic behavior in the colonies. Video microscopy of moving colonies has revealed that body wall contraction is coincident with colony locomotion. I am testing the hypothesis that locomotion in L. carteri involves alternate contraction of circular and longitudinal muscles in the body wall that act upon the common coelom and periodic attachment of adhesive glands to the substratum. To evaluate this hypothesis, length and width measurements of moving colonies are recorded to determine the extent and frequency of body wall contractions. Further microscopy procedures are utilized to record the presence of body wall muscles and to locate adhesive glands.