The Effects of Multiple Injections of β-Amyloid (25-35) into the Medial Septal Area on Spatial Learning in the Male Rat

Jonathan Litwiller
Illinois Wesleyan University

Wayne Dornan, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc


This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
The effects of multiple injections of β-amyloid (25–35) into the medial septal area on spatial learning in the male rat

Jonathan Litwiller and Wayne Dornan*, Department of Psychology, IWU

Alzheimer’s Disease (AD) is a progressive, irreversible neurological disorder that has a profound effect on memory and personality. Although when it was first diagnosed by the physician Alois Alzheimer in 1907 AD was considered a rare disorder, it is now recognized as the most common form of dementia affecting an estimated 4 million American Adults. Most people diagnosed with AD are older than 65; however, AD can occur in people in their 40s and 50s. The pathological hallmarks of AD is the neuritic plaque (comprised of β-amyloid), and the neurofibrillary tangle (comprised of an abnormally phosphorylated tau protein. Only a few years ago, β-amyloid was thought to be an inert deposit devoid of biological activity. Accumulating research, however, strongly suggests that β-amyloid initiates a cascade of events culminating in the death of the nerve cell. One focus of this laboratory over the last two years has been to inject a variety of amyloid fragments into the hippocampus, and assess the effects of these injections on a variety of spatial learning tasks in the rat. In order to expand on previous findings in our laboratory, in this study male rats received multiple injections of β-amyloid (25–35) into the medial septal area. Following a post surgical recovery period all animals were tested for spatial learning using the radial arm maze. The results of this study will be presented at the conference.