Apr 15th, 10:00 AM - 11:00 AM

Identification of LRF1 and LRF2 Mutants in Arabidopsis

Neva Laurie
Illinois Wesleyan University

Loni Walker, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc

http://digitalcommons.iwu.edu/jwprc/2000/posters/14

This Event is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
IDENTIFICATION OF LRF1 AND LRF2 MUTANTS IN ARABIDOPSIS

Neva Laurie and Loni Walker*
Department of Biology, Illinois Wesleyan University

Arabidopsis is a model system for research in plant genetics. It is a typical dicot with a relatively short life cycle and has a small, compact genome with little noncoding DNA. Because these characteristics make it so appealing for research, much of its genome has been mapped, resulting in a database of known genes with unknown functions. The purpose of this experiment is to determine a function for two of these genes, LRF1 and LRF2. These genes are suspected to code for F-box proteins, which are believed to provide specificity in marking proteins for degradation through the ubiquitin pathway. This function often acts as a control mechanism in hormone signaling pathways, and sequence similarity to known genes suggests this is a likely mode of action for LRF1 and LRF2. This experiment employs reverse genetic techniques to identify plants which have had these genes mutated, causing production of a nonfunctional protein.