Macroelements and Orthogonal Multiresolutional Analysis

Jonathan M. Corbett
Illinois Wesleyan University

Tian-Xiao He, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

https://digitalcommons.iwu.edu/jwprc/1996/posters/33

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
MACROELEMENTS AND ORTHOGONAL MULTITRRESOLUTIONAL ANALYSIS

Jonathan M. Corbett and Tian-Xiao He*, Department of Mathematics, IWU

Orthogonal multiresolutional wavelet analysis in two dimensions furnishes a basis for wavelet analysis. Bernstein-Bezier polynomials over simplexes provide elegant expressions of the necessary and sufficient conditions for a shift invariant space generating an orthogonal multiresolution analysis. In order to give the expression a formula of the inner product of two Bernstein-Bezier polynomials over a simplex has been derived:

\[\langle P_n, Q_n \rangle = \int_S P_n Q_n(X) dX = S \frac{(n!)^2}{(2n + s)!} \sum_i \sum_j a_i b_j \prod_{k=1}^s \binom{i_k + j_k}{i_k} \]

where \(V_s \) is the volume of the \(s \)-dimensional simplex \(S \), \(i = i_1 + i_2 + \ldots + i_S \), \(j = j_1 + j_2 + \ldots + j_S \), and \(a_i \) and \(b_j \) are respective Bernstein-Bezier coefficients of \(P_n \) and \(A_n \). We also give the needed expression by using the formula above.