April 16th, 9:00 AM - 10:00 AM

The Role of Psychophysiology in Usability Testing

Qiana Cryer  
Illinois Wesleyan University

Stephanie Reynolds  
Illinois Wesleyan University

John Ernst, Faculty Advisor  
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Cryer, Qiana; Reynolds, Stephanie; and Ernst, Faculty Advisor, John, "The Role of Psychophysiology in Usability Testing" (2005). John Wesley Powell Student Research Conference. 10.  
https://digitalcommons.iwu.edu/jwprc/2005/posters/10

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.  
©Copyright is owned by the author of this document.
Usability involves the testing of products for convenience and practicality. This study aims to test whether psychophysiological tools can be used in usability research. Physiological responses, such as heart rate and blood pressure were measured in order to test stress responses in users. Participants were computer science majors and non computer science majors. Each participant was hooked up to cardiovascular equipment and asked to complete a web-based task. The participants were assigned to a threatening or non threatening condition, and performed the task on both well and poorly designed websites. We hypothesize that computer science majors will show less stress relative to non computer science majors, and participants in the threat condition will show more stress relative to those in the non threat condition. Our research will help us better understand how to test new software and potential long term cardiovascular responses to using computer software.