Heterologous Expression, Purification, and Characterization of Porphobilinogen Synthase from Rhodobacter Sphaeroides

Jason Dulac
Illinois Wesleyan University

Trefan Archibald
Illinois Wesleyan University

David Bollivar, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Dulac, Jason; Archibald, Trefan; and Bollivar, Faculty Advisor, David, "Heterologous Expression, Purification, and Characterization of Porphobilinogen Synthase from Rhodobacter Sphaeroides" (2005). *John Wesley Powell Student Research Conference*. 33.
https://digitalcommons.iwu.edu/jwprc/2005/posters/33

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
The enzyme porphobilinogen synthase (PBGS, EC 4.2.1.24) catalyzes the first common step in the biosynthesis of tetrapyrrole pigments—such as heme, chlorophyll, and vitamin B12 (cobalamin)—by converting two molecules of d-aminolevulinic acid (ALA) into porphobilinogen (PBG) 1. PBGS is categorized by presence or absence of catalytic and allosteric metal ions. All known PBGS sequences contain either a catalytic zinc ion or an allosteric magnesium ion except for those sequences expressed by Rhodobacter capsulatus and Rhodobacter sphaeroides 2. This study presents initial efforts to characterize PBGS in R. sphaeroides in order to better understand the enzyme's unique characteristics. Evaluating ion dependence for R. sphaeroides PBGS is especially important due to an observed dependence upon divalent cations in the majority of known PBGS enzymes. Protein assays were carried out to determine the effect of various ions including monovalent cations (Na+, NH₄⁺, K⁺), divalent cations (Mg²⁺), and divalent anions (SO₄²⁻). Additionally, substrate concentration was altered for use in Km and Vmax determinations at varying pH values. The observation that specific activity shows protein concentration dependence suggests that PBGS can dissociate into smaller and less active subunits.