Apr 17th, 9:00 AM - 10:00 AM

Determining the Best Protocol for Raising Larvae of the Sea Urchin *Eucidaris Tribuloides*

Elizabeth A. G. Whitehill
Illinois Wesleyan University

Kimberlee M. Butler
Illinois Wesleyan University

Elizabeth J. Balser, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

https://digitalcommons.iwu.edu/jwprc/2004/posters/10

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
Previous studies (Balser, 1998, 2003; Eaves and Palmer, 2003) have shown that developmental stages (larvae) of sea stars and other echinoderms are capable of producing new larvae by cloning. One hypothesis emerging from the collected works on larval cloning is that this phenomenon is a pleisomorphic character for the Echinodermata. The pencil urchin, Eucidaris tribuloides, embodies several characters, such as the arrangement of skeletal plates, the number of tube feet per plate, and the morphology of the feeding teeth, that are considered primitive for the Echinoidea (the class to which sea urchins belong). Because E. tribuloides may represent an ancient lineage within the echinoids, we predict that the feeding larva of this species is capable of asexual reproduction during the larval phase. In further pursuit of this hypothesis, we attempted to determine the best protocol for culturing larvae of this species in the laboratory. Adult specimens of E. tribuloides were spawned, and fertilized eggs were raised either in stirred or unstirred filtered seawater. All larvae were exposed to a photoperiod of 12L:12D. Some animals kept in unstirred water were raised at room temperature (23-24°C), while others were placed in an incubator at 26°C. While all animals were fed the alga Rhodomonas lens \((10^7\) cells per ml), some received a supplemental diet of EZ Larva™ (approximately \(10^5\) particles per ml). We found that the larvae grew best at room temperature in moving water when they were fed only R. lens.