Investigation of the Effect of Shaking the Front Plate of a Mandolin

Thomas Traynor
Illinois Wesleyan University

Andrew Morrison, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc

Traynor, Thomas and Morrison, Faculty Advisor, Andrew, "Investigation of the Effect of Shaking the Front Plate of a Mandolin" (2008). *John Wesley Powell Student Research Conference*. 2.
http://digitalcommons.iwu.edu/jwprc/2008/oralpres10/2

This Event is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
INVESTIGATION OF THE EFFECT OF SHAKING THE FRONT PLATE OF A MANDOLIN

Thomas Traynor and Andrew Morrison*
Physics Department, Illinois Wesleyan University

Like any vibrating object the front and back plate of a mandolin will have mode shapes and operating deflection shapes when vibrated. The goal of this project was to test whether or not shaking the front plate, a common practice by luthiers during construction, changes the operating deflection shapes that occur during the vibration of the front plate. Some luthiers claim that shaking the front plate during construction will actually break down some of the cellular structure in the wood causing the instrument to have a better sound, like a well-played mandolin. Using speckle pattern interferometry, the front plate of a mandolin was characterized during construction before and after it had been shaken. This data will also be compared to the analysis of the front and back plate of a student mandolin.