Investigating Faraday Rotation Using Alternating Current Magnetic Fields

Jaclyn Nesbitt  
*Illinois Wesleyan University*

Robert Inzinga  
*Illinois Wesleyan University*

William Brandon, Faculty Advisor  
*Illinois Wesleyan University*

Follow this and additional works at: [https://digitalcommons.iwu.edu/jwprc](https://digitalcommons.iwu.edu/jwprc)

[https://digitalcommons.iwu.edu/jwprc/2006/posters/16](https://digitalcommons.iwu.edu/jwprc/2006/posters/16)

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.  
©Copyright is owned by the author of this document.
INVESTIGATING FARADAY ROTATION USING ALTERNATING CURRENT MAGNETIC FIELDS

Jaclyn Nesbitt and Robert Inzinga and William Brandon*
Physics Department, Illinois Wesleyan University

Motivated by recent investigations of Faraday rotation using alternating current magnetic fields,1,2,3 we have constructed a simple apparatus providing accurate Verdet constant measurements at the highest modulation frequencies to date. Specifically, we have measured the Verdet constants of water, ethyl alcohol and SF59 flint glass with magnetic field frequencies ranging from a few hundred Hz to approximately ten kHz. Agreement with accepted values is obtained up to three or four kHz, depending on the sample, when compared to the tabulated values for these materials using conventional DC Faraday Effect measurements. However, we have found an unexpected enhancement of the Faraday rotation at the higher frequencies and we are presently attempting to understand these anomalous results. Presently, we are assuming that this increased response results from an experimental artifact and we in search of any potential procedural inadequacies that could account for this behavior before we can report the results as evidence of "new physics". So, we will continue to fine-tune our technique with the aim of either further extending the frequency limits, and hence the fidelity of the high frequency response of the apparatus before justifying an indisputable, and as of yet, unpredicted modulation frequency dependent response: