Apr 8th, 9:00 AM - 10:00 AM

Determining 17,-Estradiol Levels in Natural Water Sources

Kelly Lingen
Illinois Wesleyan University

Stephen Hoffmann, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc

http://digitalcommons.iwu.edu/jwprc/2006/posters/21

This Event is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
DETERMINING 17β-ESTRADIOL LEVELS IN NATURAL WATER SOURCES

Kelly Lingen and Stephen Hoffmann*
Chemistry Department, Illinois Wesleyan University

Endocrine disrupting chemicals (EDCs) have become an increasing concern. These chemicals may mimic hormones and can disrupt the normal functioning of the endocrine system. If they are present in wastewater, they are often not removed by wastewater treatment processes. Therefore, as wastewater treatment effluent is released to the environment, these compounds may cause adverse affects in wildlife, such as a change of gender in various aquatic species or an increase in sterility. Because they are also seldom removed in drinking water purification, humans may also be affected through exposure to these compounds in drinking water from surface water sources. Previous studies show levels of EDCs in several water sources in the microgram per liter range. It is not yet known what levels of EDCs will pose a threat to the ecosystem or what levels should be considered safe for human consumption. However, studies indicate that even these low levels of EDCs can be detrimental. Of particular concern are synthetic estrogens originating from pharmaceutical sources, for instance, the oral contraceptive. Two compounds have been analyzed: 17β-estradiol and 17α-estradiol. To test for these compounds, water samples were collected from two locations on Sugar Creek, filtered, concentrated through solid-phase extraction, derivatized into their trimethylsilyl ethers, and analyzed by gas chromatography and mass spectrometry with electron impact ionization and selected ion monitoring. Our results show that 17β-estradiol is present in these samples at the nanogram per liter level.