Organochlorine Pesticide Contamination in Minnesota Grey Wolves (Canis lupus) and White Cedar (Thuja occidentalis)

Leah Maurer
Illinois Wesleyan University

Amanda Solliday
Illinois Wesleyan University

Lindsay Schelling
Illinois Wesleyan University

Given Harper, Faculty Advisor
Illinois Wesleyan University

Jeffrey Frick, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Maurer, Leah; Solliday, Amanda; Schelling, Lindsay; Harper, Faculty Advisor, Given; and Frick, Faculty Advisor, Jeffrey, "Organochlorine Pesticide Contamination in Minnesota Grey Wolves (Canis lupus) and White Cedar (Thuja occidentalis)" (2006). John Wesley Powell Student Research Conference. 17.
https://digitalcommons.iwu.edu/jwprc/2006/posters2/17

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

© Copyright is owned by the author of this document.
This study examines patterns of organochlorine (OC) pesticide (e.g. DDT) contamination in grey wolves (Canis lupus) and northern white cedar (Thuja occidentalis) collected from Minnesota. Few studies have been conducted to document OC contamination in wolves from North America, which may accumulate high levels of the compounds because they are at a high trophic level. Conifers are good indicators of atmospheric organic contamination because of the lipophilic nature of their needles. Kidney and bark samples were collected in 2002 and 2003 and tested for the presence of 17 OC pesticides and metabolites utilizing gas chromatography. The wolves were taken via a lethal control effort by personnel from the Animal and Plant Health Inspection Service (APHIS) division of the USDA. Forty-four of 55 kidneys contained OC compounds in amounts above the lower detection limit. In the kidneys where pesticides were found, the level of total OCs ranged from 7.89 to 1,647.01 ppb (parts per billion). Of the 15 bark samples tested, all contained OC pesticides in detectable levels. Total OC levels in individual samples ranged from 504.56 to 10,244.1 ppb. There was no significant difference in total OC levels between adult and juvenile wolves. Likewise, there was no significant difference in total OC levels between males and females. However, total OC levels in tree bark (Median (M) = 2,357.26 ppb) were significantly greater than total OC levels in wolves (Median (M) = 92.53 ppb). Conifers are unable to metabolize OC compounds, which may explain the higher concentration in the bark samples. Our results confirm that OC contamination still exists in the tissues of organisms in North America, despite a ban on the use of these compounds for a considerable number of years.