Effects of DosEC Deletion Mutants

Mai Nguyen
Illinois Wesleyan University

Laura Moore, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

https://digitalcommons.iwu.edu/jwprc/2006/posters/27

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
Escherichia coli is a facultative anaerobic bacterium that utilizes different metabolic pathways when the oxygen concentration changes. Among many enzymes that regulate these pathways, DosEC is a purported direct oxygen sensor and a heme-regulated phosphodiesterase. When the central heme is at the +2 oxidation state, the conformation of the N-terminal domain changes, resulting in the activation of the C-terminal domain in DosEC. When activated, this domain breaks down cAMP, an important secondary messenger in the cell signaling pathway. In this study, we investigate the role of DosEC in the metabolism of Escherichia coli by comparing the growth rate of wild type and deletion mutants of dosEC in minimum media and/or oxidative stress conditions. We will also monitor the activity of DosEC by examining cAMP level. We expect to see a difference in the cAMP level between the wide type and the dosEC deletion mutant strains.