Catalytic Reactions of Alkynes in Aqueous Conditions

Jason Williams
Illinois Wesleyan University

Eike Bauer, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
CATALYTIC REACTIONS OF ALKYNES IN AQUEOUS CONDITIONS

Jason Williams and Eike Bauer*
Chemistry Department, Illinois Wesleyan University

Catalysts are very important in chemistry and industry. They lower energy and monetary costs, time, and temperature of chemical reactions. We have found in literature a way to dimerize (add together) alkynes via aqueous conditions to form enones (a ketone functional group next to a double bond); a catalyst is necessary for this reaction. There is potential for improvement for this type of reaction. The catalytically active species we are studying presently is Rhodium based. Our goal is to investigate ways of increasing the efficiency and selectivity of the catalyst system. The product mixtures are analyzed using Infrared Spectroscopy, Nuclear Magnetic Resonance Spectroscopy, and Gas Chromatography. We hope to find a way to adjust the conditions in such a way to allow the reaction to occur at a lower temperature, shorter time, and/or higher selectivity.

There is potential use for these kinds of reactions in industry, for example pharmacy, since there is a high demand for cost efficient, time-saving, and stereo-specific reactions.