Design and Construction of a Radiofrequency Plasma Device

Matt Highland, '02  
*Illinois Wesleyan University*

Mike Moores, '02  
*Illinois Wesleyan University*

Sean Price, '03  
*Illinois Wesleyan University*

Jeremiah Williams, Faculty Advisor  
*Illinois Wesleyan University*

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Highland, '02, Matt; Moores, '02, Mike; Price, '03, Sean; and Williams, Faculty Advisor, Jeremiah, "Design and Construction of a Radiofrequency Plasma Device" (2001). *John Wesley Powell Student Research Conference*. 12.  
https://digitalcommons.iwu.edu/jwprc/2001/posters/12

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.  
©Copyright is owned by the author of this document.
A plasma consists of ionized matter. Sometimes referred to as the fourth state of matter, most of the apparent universe exists in this plasma state. Consequently, there is an obvious desire to understand the underlying physics of plasmas.

To investigate this state of matter, we have begun construction of a radiofrequency plasma device. The external helicon source has been constructed and tested, creating a nitrogen plasma. Within a specified power range, a plasma has been qualitatively observed. In the future, this source will be connected to a larger vacuum chamber (58.5 cm in length, 35.5 cm in diameter), allowing us examine a number of basic plasma processes, such as wave propagation, in a variety of plasmas. In this poster, we present work that has been done in the design and construction of this plasma device and future plans for the device.