A Simple Apparatus for Potentiometric Titrations

Jennifer Faust, '10
Illinois Wesleyan University

Rebecca Roesner, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
A new, simple apparatus has been developed for high-precision potentiometric titrations to determine the protonation constants of azamacrocyclic ligands. The inexpensive set-up serves as an economical alternative to automatic titrators, which cost up to $8000. The apparatus consists of a 250-mL jacketed reaction vessel clamped over a stir plate and connected to a chiller for temperature control. To prevent contamination of solutions by atmospheric carbon dioxide, the vessel is tightly sealed with a rubber stopper and maintained under a positive pressure of nitrogen. The rubber stopper contains three holes for the nitrogen inlet, the pH electrode, and titrant delivery. The titrant solution is stored under nitrogen during the titration and is added to the reaction vessel in small increments by micropipet. When the apparatus was utilized to standardize a KOH solution against potassium hydrogen phthalate, the relative standard deviation in the concentration was 2%. Current investigations are underway to improve accuracy and precision.