Antibody Correlates of Vaccine Induced Protection Against Ebola Virus Infection in Nonhuman Primates

Sudil Mahendra
Illinois Wesleyan University

Nancy J. Sullivan, Faculty Advisor
The National Institutes of Health

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

https://digitalcommons.iwu.edu/jwprc/2009/posters/14

This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
The Ebola virus is a single-stranded RNA virus that causes Ebola hemorrhagic fever. A vaccine candidate for the Ebola virus was developed in the lab of Dr. Nancy J. Sullivan at the National Institutes of Health using the wild-type Ebola surface glycoprotein (GP). However, due to concerns with in vitro cytotoxicity, a point mutant (PM) version of the GP vaccine was created. However, the PM GP vaccine lost a correlate of survival in the process; the IgG concentration in the blood serum of immunized non-human primates was no longer correlated with survival. We hypothesized that antibody avidity, a qualitative property, correlates with survival when ELISA IgG titers do not discern meaningful differences. We tested this hypothesis by measuring the avidity in sera from vaccinated macaques with a modified ELISA that compares antibody binding in the presence of urea. The avidity values measured did not provide a significant correlate of survival.