Multidimensional Imaging of Biological Substrates with Scanning Electrochemical Microscopy

Erica Woodall
Illinois Wesleyan University

Thomas Marlow, '11
Illinois Wesleyan University

Melinda Baur, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
MULTIDIMENSIONAL IMAGING OF BIOLOGICAL SUBSTRATES WITH
SCANNING ELECTROCHEMICAL MICROSCOPY

Erica Woodall, Thomas Marlow and Melinda Baur*
Chemistry Department, Illinois Wesleyan University

Scanning Electrochemical Microscopy (SECM) is a useful tool for analysis of biological samples because it is capable of detecting both the topography of the cell surface as well as release of electrochemically active neurotransmitters. We wish to develop the SECM as a tool to study the effects of oxidative damage on neurotransmitter release in PC12 cells. To that end, experiments with the PC12 cells and the fabrication of the ultramicroelectrodes were conducted. Because the chamber of the SECM is not as humid as the incubator, the media that supports the cells evaporates quickly and concentrates cellular waste products, killing the cells. A method of replenishing cell media or slowing evaporation is required to monitor cells over long periods of time (days) within the SECM chamber. A layer of mineral oil was used to slow media evaporation. PC12 cell growth and viability was observed under this layer of mineral oil. Ultramicroelectrodes of various tip sizes and geometries were also fabricated to enhance the capability of the instrument for analysis of biological samples. A protocol to generate consistent tip beveling was developed. Ultramicroelectrode tips were observed using a Scanning Electron Microscope.