Cloning and Transformation of the *BCHC* Gene for Understanding the Activity of Bacteriochlorophyllide Hydase

Yara Massinga
Illinois Wesleyan University

David Bollivar, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Massinga, Yara and Bollivar, Faculty Advisor, David, "Cloning and Transformation of the *BCHC* Gene for Understanding the Activity of Bacteriochlorophyllide Hydase" (2009).
https://digitalcommons.iwu.edu/jwprc/2009/posters2/14

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
CLONING AND TRANSFORMATION OF THE *bchC* GENE FOR UNDERSTANDING THE ACTIVITY OF BACTERIOCHLOROPHYLLIDE HYDRATASE

Yara Massinga and David Bollivar*
Biology Department, Illinois Wesleyan University

The process of photosynthesis is critical to the maintenance of life on Earth. This process is the source of energy that is utilized by all biological systems. Central to the process of photosynthesis is the pigment chlorophyll in plants, and bacteriochlorophyll in photosynthetic bacteria. The experiments reported in this poster relate to understanding the process by which bacteria make bacteriochlorophyll. The *bchC* gene is a protein coding gene responsible for the bacteriochlorophyll biosynthetic pathway. It is thought to encode the enzyme bacteriochlorophyllide hydratase. This enzyme has never been assayed *in vitro*. The genomic DNA of *Rhodobacter sphaeroides* was isolated and used as a template for Polymerase Chain Reaction (PCR). The PCR reaction was successful, and the PCR product was cloned into the Topo Cloning vector and transformed into *E. coli*. The plasmid containing the *bchC* gene is being used to construct an expression strain of *E. coli* to make significant quantities of the enzyme. The ultimate goal of the project is to demonstrate *in vitro* activity for the first time and then characterize the bacteriochlorophyllide hydratase in detail.