The Development of a Novel Therapeutic for the Treatment of Sickle Cell Disease

Steven Sturlis
Illinois Wesleyan University

Brian Brennan, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Sturlis, Steven and Brennan, Faculty Advisor, Brian, "The Development of a Novel Therapeutic for the Treatment of Sickle Cell Disease" (2009). John Wesley Powell Student Research Conference. 27.
https://digitalcommons.iwu.edu/jwprc/2009/posters/27

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu. ©Copyright is owned by the author of this document.
THE DEVELOPMENT OF A NOVEL THERAPEUTIC FOR THE TREATMENT OF SICKLE CELL DISEASE

Steven Sturlis and Brian Brennan*
Chemistry Department, Illinois Wesleyan University

Sickle Cell Disease is a genetic disorder caused by a single point mutation that affects the hemoglobin of red blood cells. This mutation allows the protein to interact with other molecules of hemoglobin, forming aggregates that take on a gel-like consistency within the cells. The protein aggregation deforms the cell, changing it from a normal biconcave disc form to a 'sickled' shape, leading to improper flow through capillaries. Despite the fact that the molecular mechanism for the illness has been known in detail since 1957, no truly effective treatment has yet been discovered. As a novel approach for the treatment of this ailment, we have taken advantage of a peptide screen in order to discover ligands that can bind to the protein surface and disrupt the protein-protein interactions responsible for aggregation. Our initial library is based on the natural peptide sequence of the mutation binding site.